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Abstract—Pansharpening refers to the fusion of a low spatial-1

resolution multispectral image with a high spatial-resolution2

panchromatic image. In this paper, we propose a novel low-rank3

tensor completion (LRTC)-based framework with some regular-4

izers for multispectral image pansharpening, called LRTCFPan.5

The tensor completion technique is commonly used for image6

recovery, but it cannot directly perform the pansharpening or,7

more generally, the super-resolution problem because of the8

formulation gap. Different from previous variational methods,9

we first formulate a pioneering image super-resolution (ISR)10

degradation model, which equivalently removes the downsam-11

pling operator and transforms the tensor completion framework.12

Under such a framework, the original pansharpening problem13

is realized by the LRTC-based technique with some deblurring14

regularizers. From the perspective of regularizer, we further15

explore a local-similarity-based dynamic detail mapping (DDM)16

term to more accurately capture the spatial content of the17

panchromatic image. Moreover, the low-tubal-rank property of18

multispectral images is investigated, and the low-tubal-rank prior19

is introduced for better completion and global characteriza-20

tion. To solve the proposed LRTCFPan model, we develop an21

alternating direction method of multipliers (ADMM)-based al-22

gorithm. Comprehensive experiments at reduced-resolution (i.e.,23

simulated) and full-resolution (i.e., real) data exhibit that the24

LRTCFPan method significantly outperforms other state-of-the-25

art pansharpening methods. The code is publicly available at:26

https://github.com/zhongchengwu/code LRTCFPan.27

Index Terms—Low-rank tensor completion (LRTC), Dynamic28

detail mapping (DDM), Tubal rank, Alternating direction me-29

thod of multipliers (ADMM), Pansharpening, Super-resolution.30

31

I. INTRODUCTION32

H igh-resolution multispectral (HR-MS) remote sensing33

images play a crucial role in many practical applications,34

e.g., change detection [1], target recognition [2], and classifica-35

tion [3]. Because of some physical constraints on the signal-to-36

noise ratio [4], many sensors onboard satellite platforms, such37
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Fig. 1. The whole procedure of the proposed LRTCFPan, which is a low-rank
tensor completion (LRTC)-based framework with the deblurring regularizer.

as Gaofen-2 (GF-2), QuickBird (QB), and WorldView-3 (WV- 38

3), acquire a low spatial-resolution multispectral (LR-MS) 39

image while capturing higher spatial information into a gray- 40

scaled panchromatic (PAN) image through another sensor. 41

Pansharpening refers to the spatial-spectral fusion of the LR- 42

MS image and the corresponding PAN image, aiming to yield 43

an underlying HR-MS image. To clearly illustrate the proposed 44

LRTCFPan model, the whole procedure is depicted in Fig. 1. 45

Different methodologies have recently been developed to 46

address the pansharpening problem. The most classical cate- 47

gory is the component substitution (CS)-based methods. Some 48

exemplary methods mainly include the principal component 49

analysis (PCA) [5] method, the intensity-hue-saturation (IHS) 50

[6] method, the Gram-Schmidt adaptive (GSA) [7] method, 51

the band-dependent spatial-detail (BDSD) [8] method, and the 52

partial replacement adaptive component substitution (PRACS) 53

[9] method. In these methods, the spatial component of the 54

LR-MS image is separated by spectral transformation and sub- 55

stituted with the PAN image. Generally, the CS-based methods 56

are appealing for their reduced computational burden, but they 57

inevitably cause severe spectral distortion [10]. Another widely 58

used category is the multi-resolution analysis (MRA)-based 59

methods. These methods inject the spatial details extracted 60

from the PAN image via multi-scale decomposition into the 61

upsampled LR-MS image. The instances of this class are the 62

“à-trous” wavelet transform (ATWT) [11] method, the additive 63

wavelet luminance proportional (AWLP) [12] method, and 64

the smoothing filter-based intensity modulation (SFIM) [13] 65

method. Compared with CS methods, the MRA methods are 66

characterized by higher spectral coherence while reducing spa- 67

tial preservation. Overall, both the CS and MRA methods have 68

https://github.com/zhongchengwu/code_LRTCFPan
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robust performance along different datasets. Furthermore, they69

usually do not require intensive tuning of parameters and have70

a lower computational complexity. Therefore, these methods71

are commonly used for benchmarking in pansharpening.72

More recently, deep learning (DL) has been rapidly devel-73

oped for computer vision applications [14]–[17]. Many convo-74

lutional neural network (CNN)-based approaches, e.g., [18]–75

[23], have been designed for pansharpening, showing excellent76

capabilities for feature extraction and nonlinear mapping learn-77

ing [24], and getting better performance than traditional meth-78

ods. However, these CNN-based methods generally require a79

lot of computational resources and training data [25], which80

severely limits their computational efficiency, generalization81

ability, and model interpretability.82

Variational optimization-based implementations [26]–[29]83

are in-between the CS/MRA and CNN-based methods, gener-84

ally realizing a trade-off between performance and efficiency.85

The variational methods are characterized by high general-86

ization and model interpretability [24]. These methods, e.g.,87

[25], [30]–[36], consider the pansharpening problem as an ill-88

posed inverse problem constructing the link among the LR-MS89

image, the PAN image, and the underlying HR-MS image, thus90

formulating an optimization model. The promising results have91

been generated by adopting traditional image super-resolution92

(ISR) degradation model, as in [24], [37], [38], especially93

when the characteristics of the MS sensors are considered,94

e.g., [24], [36]. However, due to the coupling of the ill-posed95

blurring and downsampling problems, many super-resolution96

models either exhibit the unnecessary solving complexity for97

decoupling, e.g., [24], or result in the unintuitive mixture of98

unfolding-based and tensor-based modeling, e.g., [39].99

In this paper, we propose a novel variational pansharpening100

method, i.e., the low-rank tensor completion (LRTC)-based101

framework with the deblurring regularizer, called LRTCFPan.102

More specifically, the proposed model consists of three folds.103

Firstly, we formulate a new ISR degradation model, thus104

theoretically decoupling and converting the original pansharp-105

ening problem into the LRTC-based framework, which directly106

eliminates the downsampling operator before regularization.107

Secondly, motivated by both the high-pass modulation (HPM)108

scheme and the local similarity of remote sensing images, we109

develop a new local-similarity-based dynamic detail mapping110

(DDM) regularizer, which is imposed on the LRTC-based111

framework to dynamically capture the high-frequency infor-112

mation of the PAN image. Furthermore, the low-tubal-rank113

characteristic is investigated, and the low-tubal-rank prior is114

introduced for better completion and global characterization.115

Under the ADMM framework, the proposed LRTCFPan model116

is efficiently solved. Extensive experiments confirm the supe-117

riority of the proposed LRTCFPan method over other classical118

and state-of-the-art pansharpening methods.119

The contributions of this paper are summarized as follows:120

• We formulate a novel ISR degradation model, allowing121

the LRTC-based framework with the deblurring regular-122

izer for pansharpening. Such a strategy directly eliminates123

the downsampling operator and provides a valuable per-124

spective for the pansharpening task.125

Fig. 2. The graphical illustration of the t-SVD of tensor X ∈ RI1×I2×I3 .

• We design a local-similarity-based DDM regularizer to 126

better characterize the spatial structure information of the 127

PAN image. Within such a regularizer, we also explore a 128

new procedure for estimating injection coefficients. 129

• We investigate the low-tubal-rank characteristic of multi- 130

spectral images and impose the low-tubal-rank prior on 131

the LRTC-based framework, aiming for better completion 132

and global characterization. 133

The remainder of the paper is organized as follows. The 134

notations and preliminaries are introduced in Section II. The 135

related works and the proposed model are described in Sec- 136

tion III. The proposed algorithm is provided in Section IV. The 137

numerical experiments are performed in Section V. Finally, the 138

conclusion is drawn in Section VI. 139

II. NOTATIONS AND PRELIMINARIES 140

A. Notations 141

Scalars, vectors, matrices, and tensors are denoted by low- 142

ercase letters, e.g., a, lowercase bold letters, e.g., a, upper- 143

case bold letters, e.g., A, and calligraphic letters, e.g., A, 144

respectively. For a third-order tensor A ∈ RI1×I2×I3 , we 145

employ A(:, :, i) or A(i) for its i-th frontal slice, A(i, j, :) 146

for its (i, j)-th tube, and A(i, j, k) or ai,j,k for its (i, j, k)-th 147

element. The Frobenius norm of A ∈ RI1×I2×I3 is defined as 148

‖A‖F :=
√∑

i,j,k |ai,j,k|2. Besides, we use Ā for the discrete 149

Fourier transformation (DFT) on all the tubes of A. Relying 150

upon the MATLAB command, we have Ā = fft(A, [ ], 3). 151

Conversely, A can be obtained from Ā via the inverse DFT 152

along each tube, i.e., A = ifft(Ā, [ ], 3). 153

B. Preliminaries 154

For clarity, we provide some definitions and theorems, and 155

briefly introduce the LRTC basics. 156

Definition II.1 (Tensor convolution (t-Conv)). Given a third- 157

order tensor A ∈ RI1×I2×I3 and a convolution kernel tensor 158

B ∈ Rm×m×I3 , where set {B(i)}I3i=1 indicates various kernels 159

along the spectral dimension. Then, the t-Conv between A and 160

B yields a tensor A•B ∈ RI1×I2×I3 , whose i-th frontal slice 161

is defined by 162

(A • B)(:, :, i) := A(i) ⊗B(i),

where ⊗ represents the spatial convolution operator. 163

Theorem 1 (Tensor singular value decomposition (t-SVD) 164

[40]). Let A ∈ RI1×I2×I3 be a third-order tensor, then it can 165

be factorized as 166

A = U ∗ S∗VH ,
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where ∗ is the tensor-tensor product (t-product) operator, U ∈167

RI1×I1×I3 and V ∈ RI2×I2×I3 are orthogonal tensors, S ∈168

RI1×I2×I3 is an f-diagonal tensor, and (·)H represents the169

conjugate transpose operator. See [40], [41] for more details.170

The graphical illustration of the t-SVD is shown in Fig. 2.171

Definition II.2 (Tensor multi-rank and tubal rank [42]). Let172

A ∈ RI1×I2×I3 be a third-order tensor, then the tensor multi-173

rank is a vector rankm(A) ∈ RI3 with its i-th entry being the174

rank of the i-th frontal slice of Ā, where Ā = fft(A, [ ], 3).175

The tubal rank, denoted as rankt(A), is defined as the number176

of nonzero singular tubes of S, that is,177

rankt(A) := #{i,S(i, i, :) 6= 0},

where S is provided by the t-SVD A = U ∗ S∗VH .178

In particular, the inverse DFT S = ifft(S̄, [ ], 3) gives the
following equation

S(i, i, 1) =
1

I3

I3∑
k=1

S̄(i, i, k),

where S̄(:, :, k) is the singular value matrix of the k-th frontal179

slice of Ā. That is, rankt(A) = max (rankm(A)).180

Definition II.3 (Tensor singular value [43]). Given a third-181

order tensor A ∈ RI1×I2×I3 , then the singular values of A182

are defined as the diagonal elements of S(i, i, 1), where S is183

provided by the t-SVD A = U ∗ S∗VH .184

Therefore, rankt(A) is equivalent to the number of non-185

zero tensor singular values of A, and its non-convex approxi-186

mation can be given via the following Definition II.4.187

Definition II.4 (Log tensor nuclear norm [39]). For a tensor188

A ∈ RI1×I2×I3 , the log tensor nuclear norm is defined as the189

log-sum of the singular values of all the frontal slices of Ā,190

i.e.,191

‖A‖lt :=
1

I3

I3∑
k=1

t∑
i=1

log(S̄(i, i, k) + ε),

where S̄ = fft(S, [ ], 3), in which S is provided by the t-SVD192

A = U ∗ S∗VH , t is the rankt(A), and ε is a small positive193

value enforcing a non-zero input.194

Theorem 2 (Tensor singular value thresholding (t-SVT)195

[44]). For any τ>0, and let Y = U ∗ S∗VH be the t-SVD196

of tensor Y ∈ RI1×I2×I3 , a closed-form minimizer of197

arg min
X

τ‖X‖lt +
1

2
‖X − Y‖2F

is given by the t-SVT as Proxετ (Y), which is defined by198

Proxετ (Y) := U ∗ Sετ∗VH ,

where Sετ = ifft(S̄ετ , [ ], 3). Let S̄ = fft(S, [ ], 3), the199

elements of S̄ετ obey200

S̄ετ (i, j, k) =

{
0, if c2 ≤ 0,
c1+
√
c2

2 , if c2 > 0,

where c1 = |S̄(i, j, k)| − ε and c2 = c21 − 4(τ − ε|S̄(i, j, k)|).201

Fig. 3. A deeper perspective on the “nearest” downsampling operator, which
is widely adopted [37], [39]. The scale factor r is equal to 4, andM ↓r= Y .
Moreover, Y ↑r,0 denotes the result of using the scale factor r to perform
zero-interpolation for Y .

In what follows, we also briefly introduce the LRTC basics. 202

The LRTC aims to recover the missing entries (values of 0) 203

from an observed incomplete tensor by exploiting various low- 204

rank priors, such as the Tucker rank [45], the multi-rank [46], 205

and the fibered rank [44]. Mathematically, the general rank- 206

minimization tensor completion model is formulated as 207

min
X

rank(X ) s.t. PΩ(X ) = Y, (1)

where X is the underlying tensor, Y is the observed tensor,
Ω is the index set indicating available entries, and PΩ(·) is
the projection function keeping the entries of X in Ω while
forcing all the other values to zeros, i.e.,

(PΩ(X ))i1,i2,··· ,iN :=

{
xi1,i2,··· ,iN , if (i1, i2, · · · , iN ) ∈ Ω,

0, otherwise.

Remark II.1. According to the requirements of the projection 208

function in (1), variables X and Y must have the same size, 209

and their elements in the set Ω must be numerically equivalent. 210

However, any two images involved in the pansharpening task 211

typically do not satisfy the prerequisites. Consequently, the 212

LRTC cannot be awkwardly applied to the pansharpening task. 213

III. RELATED WORKS AND PROPOSED MODEL 214

Three images are involved in pansharpening, including the 215

underlying HR-MS image X ∈ RH×W×S , the LR-MS image 216

Y ∈ Rh×w×S , and the PAN image P ∈ RH×W . Additionally, 217

H = h× r and W = w × r hold, where r is the scale factor. 218

A. Related Works 219

1) Spectral Perspective: Since the LR-MS image can be 220

regarded as the degraded version of the underlying HR-MS 221

image, the primary objective of the pansharpening methods is 222

to construct the degradation model between them. Similar to 223

the single image super-resolution problem [47], [48], there also 224

exists an acknowledged and widely used degradation model for 225

pansharpening, which is formulated by 226

Y = (X • B) ↓r +N0, (2)

where • is the defined t-Conv operator, ↓r denotes the “near- 227

est” downsampling with the scale factor r, and N0 indicates an 228

additive zero-mean Gaussian noise. Such a degradation model 229

has extensively been adopted in the field of pansharpening, 230

significantly contributing to the variational optimization-based 231

pansharpening methods, such as [24], [37], [49]. 232
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2) Spatial Perspective: As an ill-posed imaging inverse233

problem, the ISR degeneration model (2) makes it challenging234

to accurately reconstruct the underlying HR-MS image. Con-235

sequently, the pansharpening problem requires establishing236

another relationship between the underlying HR-MS image237

and the PAN image, thereby leveraging the spatial prior238

information of the latter. Considering the difficulty of nonlin-239

ear mapping, the multi-resolution analysis (MRA) framework240

[10], [18], [24], [50] has emerged as a powerful tool for241

learning the spatial information of the PAN image. Formally,242

the MRA framework is243

X = Ŷ + G · (P̂ − P̂LP ), (3)

where Ŷ ∈ RH×W×S denotes the interpolated version of Y ,244

P̂ ∈ RH×W×S is the replicated or histogram-matched version245

of P, P̂LP ∈ RH×W×S is the low-pass filtered version of P̂ ,246

G is the injection coefficient, and · is the Hadamard product.247

Two common options for defining the coefficient are G = 1248

(i.e., the additive injection scheme) and G = Ŷ ·/P̂LP (i.e., the249

high-pass modulation (HPM) scheme), where ·/ denotes the250

element-wise division. Benefiting from the greater flexibility251

in configuring the local weights, the HPM scheme is generally252

superior to the additive one and is successfully introduced into253

the variational pansharpening methods, e.g., [24], [51].254

B. Proposed Model255

As previously described, the coupled formulation between256

blurring and downsampling typically causes two drawbacks: 1)257

the unnecessary solving complexity for decoupling, and 2) the258

inconsistency in modeling form. To alleviate these limitations,259

we consider developing a new ISR degradation model by in-260

vestigating the downsampling operator. As illustrated in Fig. 3,261

the “nearest” downsampling ↓r can actually be refined into a262

two-stage operator, i.e., “nearest” sampling and decimation,263

and the former is a sampling mode for the LRTC problem.264

Accordingly, when the form of M ↓r= Y is established and265

the LR-MS image is preprocessed, the inverse problem of266

“nearest” downsampling can be modeled by tensor completion.267

Inspired by it, we easily modify the original ISR degradation268

model (2) based on the fact that there exists a zero-mean269

Gaussian noise N1 such that N1 ↓r= N0, leading to270

Y = (X • B) ↓r +N0 = (X • B) ↓r +N1 ↓r
= (X • B +N1) ↓r .

(4)

Consequently, the new ISR degradation model can be repre-271

sented as Y = (X•B+N1) ↓r, which assumes that the LR-MS272

image is the blurred, noisy, then downsampled version of the273

underlying HR-MS image. When the LR-MS image is further274

processed, the degradation model can be equivalently rewritten275

as the following projection-based form276

PΩ(X • B +N1) = Y ↑r,0, (5)

where Y ↑r,0 ∈ RH×W×S is the preprocessed image. Relying277

upon the projection-based formulation, the downsampling op-278

erator ↓r is eliminated, and only the X •B+N1 is maintained.279

Fig. 4. The graphical illustration of estimating the modulated image D (i.e.,
Gnew ·(P̂−P̂LP )) on a reduced-resolution Guangzhou image (source: GF-2).
Symbols · and diff denote the Hadamard product and the pixel-wise difference,
respectively. The block size is 8× 8, and the low-pass filters are available2.

To generate the underlying HR-MS image, we can formulate 280

the following rank-minimization problem 281

min
X ,X•B+N1

rank(X • B +N1)

s.t. PΩ(X • B +N1) = Y ↑r,0,
(6)

where rank(·) indicates the tensor rank to be determined. 282

Since model (6) is obviously ill-posed, the regularizer that can 283

leverage the spatial information of the PAN image is required. 284

To explore a superior regularizer, the HPM model of (3) is 285

further improved. Despite the significant merits of the HPM 286

model, the coefficient G, i.e., Ŷ ·/P̂LP , generally demonstrates 287

unstable computational accuracy and hypersensitivity, which 288

are explained by the nonuniqueness of Ŷ and the oversensi- 289

tivity of P̂LP for different low-pass filters. Moreover, although 290

Ŷ is originally adopted to approximate the low-frequency 291

information of X , the chaotic relationship is inevitably caused 292

owing to Y = (X •B+N1) ↓r. To address these deficiencies, 293

we consider directly computing the low-frequency information 294

of X by X • B and developing a novel strategy for estimating 295

the coefficient. Resultantly, we have 296

X − X • B +N2 = Gnew · (P̂ − P̂LP ), (7)

where N2 is a Gaussian error, P̂1 is the histogram-matched P, 297

and Gnew is the new coefficient determined in Section III-C. 298

For simplicity, model (7) can compactly be expressed as 299

X − X • B +N2 = D, (8)

where D = Gnew · (P̂ − P̂LP ) is the pre-modulated image. 300

Furthermore, considering the similarity of the local spatial de- 301

tails, we conduct model (8) on each image patch to learn more 302

accurate coefficients (see Fig. 4), thus completely forming the 303

local-similarity-based DDM regularizer. Equipped with such a 304

regularizer, the rank-minimization model (6) is improved as 305

min
X ,X•B+N1

rank(X • B +N1) + λ1‖X − X • B − D‖2F

s.t. PΩ(X • B +N1) = Y ↑r,0.
(9)

306

1P̂(i) =
(
Std(Y(i))/Std(P)

)(
P − Mean(P)

)
+ Mean(Y(i)), where

Mean(·) and Std(·) are the mean and standard deviation operators.
2http://openremotesensing.net/knowledgebase/

a-critical-comparison-among-pansharpening-algorithms/

http://openremotesensing.net/knowledgebase/a-critical-comparison-among-pansharpening-algorithms/
http://openremotesensing.net/knowledgebase/a-critical-comparison-among-pansharpening-algorithms/
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Regarding the above model (9), the low-rank characteristic307

of variable X • B +N1 needs to be investigated. Among the308

traditional and classical tensor decompositions, the CANDE-309

COMP/PARAFAC (CP) one [52], Tucker one [53], and tensor310

singular value decomposition (t-SVD) [40] have been widely311

applied to the hyperspectral super-resolution problem [54],312

[55]. Corresponding to these decompositions, the CP rank,313

Tucker rank, and tubal rank have also been introduced into the314

tensor completion problem [56]–[58]. However, the existence315

of the optimal CP-rank approximation cannot be assured [59].316

Moreover, since the X • B +N1 for pansharpening is merely317

the multispectral image, the low-Tucker-rank property is rel-318

atively insignificant, especially along the spectral dimension.319

Accordingly, we investigate the tubal-rank rather than other320

characteristics of multispectral images. From Fig. 5(c) and (f),321

we observe that X • B + N1 has a significant low-rankness,322

revealing the validity of the low-tubal-rank prior. Additionally,323

Fig. 5(a) and (d) depict that the underlying HR-MS image X324

can also exhibit the low-tubal-rank property, which implies325

that the global low-tubal-rank prior can be imposed on the326

underlying HR-MS image to penalize the ill-posed deconvo-327

lution problem. By combining two corresponding low-bubal-328

rank regularizers, model (9) can be transformed into the final329

LRTC-based framework, i.e., LRTCFPan, as follows,330

min
X ,X•B+N1

rankt(X • B +N1) + λ1‖X − X • B − D‖2F

+ λ2rankt(X )

s.t. PΩ(X • B +N1) = Y ↑r,0.
(10)

Since directly solving rank minimization is NP-hard, we give331

the non-convex approximation of model (10) by332

min
X ,X•B+N1

‖X • B +N1‖lt + λ1‖X − X • B − D‖2F

+ λ2‖X‖lt
s.t. PΩ(X • B +N1) = Y ↑r,0.

(11)

Let T = X •B+N1, model (11) can be further converted to333

min
X ,T

‖X‖lt + λ1‖X − X • B − D‖2F + λ2‖X • B − T ‖2F

+ λ3‖T ‖lt
s.t. PΩ(T ) = Y ↑r,0,

(12)

where D = Gnew · (P̂ − P̂LP ) is computed before regulariza-334

tion, and λl, l = 1, 2, 3, are positive regularization parameters.335

C. Estimating Coefficient Gnew336

According to (7), we easily have the following equation337 (
(X−X •B+N2)•B

)
↓r=

(
Gnew ·(P̂−P̂LP )•B

)
↓r . (13)

When G
(i)
new, i = 1, 2, · · · , S, are constant matrices, the above338

equation (13) is equivalent to339

(X • B) ↓r + (N2 • B) ↓r − (X • B • B) ↓r
= Gnew ↓r ·

(
(P̂ • B) ↓r −(P̂LP • B) ↓r

)
.

(14)
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Fig. 5. The illustration of the low-tubal-rank characteristic on the reduced-
resolution Guangzhou image (sensor: GF-2). The first row is (a) the HR-MS
image modeled as X ∈ R256×256×4, (b) the low-pass filtered image, and
(c) the filtered image with Gaussian noise of standard deviation level 0.01.
The (d), (e), and (f) illustrate the singular value curves of (a), (b), and (c),
respectively. The approximated tubal ranks [44] are marked by black stars.

Since X is unavailable, we assume that there exists a Gaussian 340

error E such that the following equation holds 341

(X • B • B) ↓r= (X • B + E) ↓r •B. (15)

Subsequently, equation (14) can be rewritten as 342

(X • B) ↓r + (N2 • B) ↓r − (X • B + E) ↓r •B

= Gnew ↓r ·
(

(P̂ • B) ↓r −(P̂LP • B) ↓r
)
.

(16)

For E1, E2 ∈ RH×W×S and E3 ∈ Rh×w×S , we further define 343

ΓE1,E2 := (X • B + E1) ↓r − (X • B + E2) ↓r •B (17)

and 344

ΥE3 := (P̂ • B) ↓r −E3. (18)

Ultimately, coefficients G
(i)
new, i = 1, 2, · · · , S, can be esti- 345

mated by 346

G(i)
new =

w∑
k=1

h∑
j=1

(
(ΓN2•B,E)

(i) ·
(

Υ(P̂LP •B)↓r

)(i)
)
j,k∥∥∥∥(Υ(P̂LP •B)↓r

)(i)
∥∥∥∥2

F

1

≈

w∑
k=1

h∑
j=1

(
(Y − Y • B)

(i) ·
(

Υ(P̂LP •B)↓r

)(i)
)
j,k∥∥∥∥(Υ(P̂LP •B)↓r

)(i)
∥∥∥∥2

F

1

≈

w∑
k=1

h∑
j=1

(
(Y − Y • B)

(i) ·
(

Υ(P̂LP )↓r•B

)(i)
)
j,k∥∥∥∥(Υ(P̂LP )↓r•B

)(i)
∥∥∥∥2

F

1,

(19)

where 1 is the all-ones matrix, and the Υ(P̂LP )↓r•B is adopted 347

to maintain consistency with the (X • B + E) ↓r •B in (15). 348

When N1 → 0, N2 → 0, Gnew → 1, but E 9 0, the negative 349

impact from E can be appropriately weakened. 350
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IV. PROPOSED ALGORITHM351

A. Algorithm352

For optimizing the proposed LRTCFPan model, we develop353

an efficient ADMM-based algorithm. By introducing auxiliary354

variables Q, R and Z , we can rewrite (12) as the following355

constrained problem356

min
X ,T

‖Q‖lt + λ1 ‖R − Z −D‖2F + λ2‖Z − T ‖2F + λ3‖T ‖lt

s.t. PΩ(T ) = Y ↑r,0, Q = X , R = X , Z = X • B.
(20)

The augmented Lagrangian function of (20) is357

L(X , T ,Q,R,Z) = ‖Q‖lt + λ1 ‖R − Z −D‖2F

+ λ2‖Z − T ‖2F + λ3‖T ‖lt + ι(T ) +
η1

2

∥∥∥∥X −Q+
Λ1

η1

∥∥∥∥2

F

+
η2

2

∥∥∥∥X −R+
Λ2

η2

∥∥∥∥2

F

+
η3

2

∥∥∥∥X • B − Z +
Λ3

η3

∥∥∥∥2

F

,

(21)

where Λl, l = 1, 2, 3, are the Lagrange multipliers, ηl, l =358

1, 2, 3, are positive penalty parameters, and ι(T ) is an indicator359

function defined as360

ι(T ) :=

{
0, if PΩ(T ) = Y ↑r,0,
∞, otherwise.

(22)

Afterwards, model (20) can be solved by alternatively mini-361

mizing the following simpler subproblems:362

1) X -subproblem: By fixing T ,Q,R,Z, and Λl, the X -363

subproblem can be given as364

min
X

η1

2

∥∥∥∥X −Q+
Λ1

η1

∥∥∥∥2

F

+
η2

2

∥∥∥∥X −R+
Λ2

η2

∥∥∥∥2

F

+
η3

2

∥∥∥∥X • B − Z +
Λ3

η3

∥∥∥∥2

F

.

(23)

According to the modulation transfer function (MTF)-matched365

filters [60], the B(i), i = 1, 2, · · · , S, can be configured with366

different blurring kernels [36]. Accordingly, we can rearrange367

problem (23) as the frontal slice-based expression, i.e.,368

min
X

η1

2

S∑
i=1

∥∥∥∥∥X(i) −Q(i) +
Λ

(i)
1

η1

∥∥∥∥∥
2

F

+
η2

2

S∑
i=1

∥∥∥∥∥X(i) −R(i) +
Λ

(i)
2

η2

∥∥∥∥∥
2

F

+
η3

2

S∑
i=1

∥∥∥∥∥X(i) ⊗B(i) − Z(i) +
Λ

(i)
3

η3

∥∥∥∥∥
2

F

,

(24)

which is equivalent to369

min
X

S∑
i=1

(
η1

2

∥∥∥∥∥X(i) −Q(i) +
Λ

(i)
1

η1

∥∥∥∥∥
2

F

+
η2

2

∥∥∥∥∥X(i) −R(i) +
Λ

(i)
2

η2

∥∥∥∥∥
2

F

+
η3

2

∥∥∥∥∥X(i) ⊗B(i) − Z(i) +
Λ

(i)
3

η3

∥∥∥∥∥
2

F

)
.

(25)

Algorithm 1 The ADMM-based LRTCFPan Solver
Input: Y , P, λl, ηl, r = 4, and ε = 2× 10−5.
Initialization:

1: X ← 0, T ← 0,Q ← 0,R ← 0,Z ← 0, and Λl ← 0.
2: D ← Gnew · (P̂ − P̂LP ).
3: while not converged do
4: Record the last-update result Xlast.
5: Updata X via (27)-(28).
6: Updata T via (30).
7: Updata Q via (32).
8: Updata R via (34).
9: Updata Z via (36).

10: Updata Lagrange multipliers Λl via (37).
11: Check the convergence criterion:
12: ‖X − Xlast‖F /‖Xlast‖F < ε.
13: end while
Output: The HR-MS image X .

Therefore, the original minimization problem (23) can be 370

separated into S independent problems as follows, 371

min
X(i)

η1
2

∥∥∥∥∥X(i) −Q(i) +
Λ

(i)
1

η1

∥∥∥∥∥
2

F

+
η2
2

∥∥∥∥∥X(i) −R(i) +
Λ

(i)
2

η2

∥∥∥∥∥
2

F

+
η3
2

∥∥∥∥∥X(i) ⊗B(i) − Z(i) +
Λ

(i)
3

η3

∥∥∥∥∥
2

F

, i = 1, 2, · · · , S.

(26)

Under the condition of periodic boundary, the closed-form 372

solution of the i-th problem is given by 373

X(i) ← F−1

(
Σ ./

(
η3F(B(i)) · F(B(i))‡ + η1 + η2

))
(27)

with 374

Σ =η1F(Q(i)) + η2F(R(i))−F(Λ
(i)
1 )−F(Λ

(i)
2 )

+
(
η3F(Z(i))−F(Λ

(i)
3 )
)
· F(B(i))‡,

(28)

where F(·) and F−1(·) are the 2-D fast Fourier transform 375

(FFT) and its inverse operator, respectively, and ‡ denotes the 376

complex conjugate. 377

2) T -subproblem: Similarly, the T -subproblem is 378

min
T

λ2‖Z − T ‖2F + λ3‖T ‖lt + ι(T ). (29)

Based on Theorem 2 and the definition of indicator function 379

ι(T ), we have 380

T ← PΩc

(
Proxελ3

2λ2

(Z)

)
+ Y ↑r,0, (30)

where Ωc indicates the complementary set of Ω. 381

3) Q-subproblem: By fixing the other estimated directions 382

for alternating, we obtain the Q-subproblem as 383

min
Q
‖Q‖lt +

η1

2

∥∥∥∥X −Q+
Λ1

η1

∥∥∥∥2

F

. (31)

Based on Theorem 2 again, we can immediately get 384

Q ← Proxε1
η1

(
X +

Λ1

η1

)
. (32)
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Fig. 6. The fusion results on the reduced-resolution Guangzhou dataset (source: GF-2). The first two rows: the visual inspection of the ground-truth (GT)
image and the close-ups of the fused images. The last two rows: the residual maps using the GT image as a reference.

4) R-subproblem: The R-subproblem is385

min
R

λ1 ‖R − Z −D‖2F +
η2

2

∥∥∥∥X −R+
Λ2

η2

∥∥∥∥2

F

, (33)

which has the closed-form solution as follows,386

R ← 2λ1(Z +D) + η2X + Λ2

2λ1 + η2
. (34)

5) Z-subproblem: The Z-subproblem is387

min
Z

λ1 ‖R − Z −D‖2F +
η3

2

∥∥∥∥X • B − Z +
Λ3

η3

∥∥∥∥2

F

+ λ2‖Z − T ‖2F .
(35)

Correspondingly, the closed-form solution is given by388

Z ← 2λ1(R−D) + 2λ2T + η3X • B + Λ3

2(λ1 + λ2) + η3
. (36)

Under the ADMM framework, the Lagrangian multipliers389

Λl, l = 1, 2, 3, can be directly updated by390 Λ1

Λ2

Λ3

←
Λ1

Λ2

Λ3

+

η1 0 0
0 η2 0
0 0 η3

 X −Q
X −R
X • B − Z

 . (37)

The solving pseudocode for the proposed LRTCFPan model391

is summarized in Algorithm 1.392

B. Computational Complexity Analysis393

The complexity of Algorithm 1 mainly involves comput-394

ing the FFT, the inverse FFT (IFFT), and the SVD. More395

specifically, the computational complexity of updating X is396

O(HWSlog(HW )). The computational complexity of up-397

dating T and Q is O(HWS(log(S) + min(H,W ))). Since398

log(S) + min(H,W ) � log(HW ), more computational re-399

sources are generally consumed for solving the T and Q400

subproblems. Furthermore, the computational complexity of401

updating R, Z , and Λl (l = 1, 2, 3) is O(HWS). Therefore,402

the total computational complexity for each iteration in Algo-403

rithm 1 is O(HWS(log(HWS) + min(H,W ))).404

V. EXPERIMENTAL RESULTS 405

To validate the superiority of the proposed LRTCFPan 406

method, we conduct comprehensive numerical experiments on 407

several commonly used datasets1, including the Guangzhou 408

dataset (source: GF-2), the Indianapolis dataset (source: QB), 409

and the Rio dataset (source: WV-3). The scale factors for all 410

the datasets are 4, i.e., r = 4. Numerically, all experimental 411

data are pre-normalized into [0, 1]. All the experiments are 412

implemented in MATLAB (R2018a) on a computer with 16Gb 413

of RAM and an Intel(R) Core(TM) i5-4590 CPU: @3.30 GHz. 414

For each sensor, e.g., GF-2, QB, and WV-3, S+1 low-pass 415

filters are required for configuring the B(i), i = 1, 2, · · · , S 416

(i.e., the blurring kernels of the MS image), and the (·)LP 417

(i.e., the blurring kernel of the PAN image). According to 418

[60], the kernels designed to match the modulation transfer 419

functions (MTFs) of MS and PAN sensors are advisable. 420

More specifically, these S + 1 blurring kernels are assumed 421

to be Gaussian-shaped with size of 41 × 41 having S + 1 422

standard deviations. When applied to a specific sensor, the 423

S + 1 standard deviations can be determined accordingly. 424

The compared methods include EXP [61], PRACS [9], C- 425

GSA [62], BDSD-PC [63], AWLP [12], GLP-CBD [60], GLP- 426

FS [64], MF-HG [65], 18’TIP [32], 19’IF [35], 19’CVPR [25], 427

RR [66], CDIF [49], and BAGDC [51]. It is worth remarking 428

that the source codes of the competitors are available at either 429

the website2 or the authors’ homepages. The hyper-parameters 430

adopted in these variational optimization-based methods, i.e., 431

the 18’TIP, the 19’IF, the 19’CVPR, the RR, the CDIF, and 432

the BAGDC, are configured within a specific range suggested 433

by their authors to achieve high performance. 434

When evaluated at reduced-resolution (i.e., simulated) data, 435

six popular metrics, i.e., the peak signal-to-noise ratio (PSNR), 436

the structural similarity index measure (SSIM) [67], the 437

spectral angle mapper (SAM) [68], the spatial correlation 438

coefficient (SCC) [12], the relative dimensionless global error 439

1http://www.digitalglobe.com/samples?search=Imagery
2http://openremotesensing.net/kb/codes/pansharpening/

http://www.digitalglobe.com/samples?search=Imagery
http://openremotesensing.net/kb/codes/pansharpening/
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TABLE I
THE QUALITY METRICS ON 82 IMAGES WITH A PAN SIZE OF 256× 256 FROM THE REDUCED-RESOLUTION GUANGZHOU DATASET (SOURCE: GF-2).

(BOLD: BEST; UNDERLINE: SECOND BEST)

Method PSNR SSIM SAM SCC ERGAS Q4 Runtime[s]

EXP [61] 31.094 ± 2.125 0.794 ± 0.060 2.007 ± 0.361 0.911 ± 0.029 2.645 ± 0.394 0.794 ± 0.043 0.01
PRACS [9] 33.973 ± 1.862 0.896 ± 0.027 1.883 ± 0.317 0.953 ± 0.021 1.894 ± 0.283 0.887 ± 0.033 0.07
C-GSA [62] 33.944 ± 2.113 0.895 ± 0.031 1.910 ± 0.396 0.950 ± 0.021 1.924 ± 0.358 0.889 ± 0.036 0.29
BDSD-PC [63] 33.882 ± 2.086 0.894 ± 0.030 1.844 ± 0.327 0.953 ± 0.018 1.911 ± 0.323 0.893 ± 0.029 0.04
AWLP [12] 33.504 ± 2.012 0.870 ± 0.035 2.164 ± 0.454 0.946 ± 0.018 1.919 ± 0.288 0.870 ± 0.035 0.08
GLP-CBD [60] 33.423 ± 1.862 0.886 ± 0.030 1.763 ± 0.343 0.944 ± 0.023 1.981 ± 0.310 0.888 ± 0.030 24.91
GLP-FS [64] 33.984 ± 1.770 0.892 ± 0.028 1.804 ± 0.319 0.953 ± 0.018 1.838 ± 0.264 0.890 ± 0.035 0.07
MF-HG [65] 33.772 ± 1.853 0.894 ± 0.027 1.787 ± 0.310 0.951 ± 0.015 1.910 ± 0.242 0.886 ± 0.036 0.04
18’TIP [32] 34.014 ± 1.797 0.888 ± 0.026 1.623 ± 0.298 0.952 ± 0.020 1.820 ± 0.282 0.890 ± 0.032 35.40
19’IF [35] 33.411 ± 1.819 0.885 ± 0.029 1.719 ± 0.315 0.947 ± 0.022 1.952 ± 0.349 0.879 ± 0.041 11.81
19’CVPR [25] 33.176 ± 2.198 0.877 ± 0.037 1.737 ± 0.322 0.946 ± 0.018 2.114 ± 0.332 0.870 ± 0.027 9.66
RR [66] 32.668 ± 1.835 0.835 ± 0.044 2.357 ± 0.443 0.921 ± 0.033 1.986 ± 0.340 0.832 ± 0.055 15.47
CDIF [49] 35.312 ± 2.087 0.917 ± 0.025 1.508 ± 0.292 0.965 ± 0.015 1.594 ± 0.293 0.925 ± 0.021 25.58
BAGDC [51] 33.930 ± 1.653 0.890 ± 0.024 2.033 ± 0.359 0.953 ± 0.018 1.895 ± 0.232 0.892 ± 0.027 0.67
LRTCFPan 35.918 ± 2.087 0.921 ± 0.022 1.391 ± 0.274 0.968 ± 0.014 1.496 ± 0.275 0.926 ± 0.039 29.41

Ideal value +∞ 1 0 1 0 1 -

TABLE II
THE QUALITY METRICS ON 42 IMAGES WITH A PAN SIZE OF 256× 256 FROM THE REDUCED-RESOLUTION INDIANAPOLIS DATASET (SOURCE: QB).

(BOLD: BEST; UNDERLINE: SECOND BEST)

Method PSNR SSIM SAM SCC ERGAS Q4 Runtime[s]

EXP [61] 28.038 ± 2.710 0.682 ± 0.075 8.280 ± 1.453 0.771 ± 0.026 11.927 ± 1.387 0.595 ± 0.081 0.01
PRACS [9] 31.029 ± 2.203 0.829 ± 0.034 8.058 ± 1.502 0.898 ± 0.023 8.499 ± 0.694 0.786 ± 0.104 0.07
C-GSA [62] 32.057 ± 2.138 0.861 ± 0.027 7.143 ± 1.244 0.910 ± 0.020 7.530 ± 0.665 0.835 ± 0.099 0.29
BDSD-PC [63] 31.920 ± 2.130 0.855 ± 0.028 7.801 ± 1.457 0.906 ± 0.019 7.648 ± 0.630 0.832 ± 0.096 0.04
AWLP [12] 31.506 ± 2.278 0.845 ± 0.032 8.172 ± 1.566 0.903 ± 0.017 8.037 ± 0.790 0.813 ± 0.093 0.07
GLP-CBD [60] 31.774 ± 2.173 0.857 ± 0.028 7.241 ± 1.289 0.906 ± 0.018 7.711 ± 0.624 0.833 ± 0.088 24.46
GLP-FS [64] 31.689 ± 2.058 0.850 ± 0.028 7.614 ± 1.358 0.905 ± 0.020 7.776 ± 0.588 0.822 ± 0.100 0.07
MF-HG [65] 31.161 ± 2.159 0.835 ± 0.034 7.782 ± 1.434 0.890 ± 0.018 8.485 ± 0.766 0.804 ± 0.091 0.04
18’TIP [32] 31.228 ± 2.211 0.824 ± 0.035 8.730 ± 1.593 0.899 ± 0.016 8.415 ± 0.705 0.798 ± 0.083 34.42
19’IF [35] 31.512 ± 2.061 0.844 ± 0.030 8.329 ± 1.530 0.903 ± 0.018 7.901 ± 0.641 0.822 ± 0.099 11.76
19’CVPR [25] 30.224 ± 2.477 0.798 ± 0.044 7.828 ± 1.364 0.879 ± 0.016 9.440 ± 0.938 0.743 ± 0.093 8.32
RR [66] 30.453 ± 2.556 0.814 ± 0.049 7.807 ± 1.296 0.859 ± 0.021 8.602 ± 0.968 0.779 ± 0.073 20.64
CDIF [49] 32.485 ± 2.078 0.866 ± 0.026 7.247 ± 1.297 0.919 ± 0.018 7.223 ± 0.619 0.852 ± 0.089 29.05
BAGDC [51] 30.822 ± 2.227 0.800 ± 0.040 8.500 ± 1.492 0.884 ± 0.016 8.828 ± 0.668 0.776 ± 0.103 0.84
LRTCFPan 32.727 ± 2.132 0.873 ± 0.025 7.032 ± 1.264 0.922 ± 0.016 6.964 ± 0.596 0.861 ± 0.092 29.38

Ideal value +∞ 1 0 1 0 1 -

in synthesis (ERGAS) [69], and the Q2n [70], are adopted.440

When evaluated at full-resolution (i.e., real) data, the quality441

with no reference (QNR) [71] metric, which consists of the442

spectral distortion index (i.e., Dλ) and the spatial distortion443

index (i.e., Ds), is employed.444

A. Qualitative Comparison445

1) Reduced-Resolution Data Experiment: To qualitatively446

evaluate the performance of the proposed LRTCFPan method,447

we first conduct the numerical experiments on the reduced-448

resolution images, which are simulated from the real-world449

Guangzhou (sensor: GF-2), Indianapolis (sensor: QB), and Rio450

(sensor: WV-3) datasets. According to Wald’s protocol [72],451

the simulated HR-MS image, the simulated LR-MS image, 452

and the simulated PAN image can be considered as the blurred 453

and downsampled versions of the underlying HR-MS image, 454

the real LR-MS image, and the real PAN image, respectively. 455

Since the ISR degradation model Y = (X•B+N1) ↓r assumes 456

that the real LR-MS image is the blurred and downsampled 457

version of the underlying HR-MS image when noise-free, 458

the real LR-MS image is actually assigned as the simulated 459

HR-MS image without additional processing. Considering the 460

page layout, we present only the visual comparative results 461

of a 4-bands (i.e., the simulated Guangzhou data) experiment 462

and an 8-bands (i.e., the simulated Rio data) experiment. By 463

the RGB rendering, the corresponding results are depicted in 464
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Fig. 7. The fusion results on the reduced-resolution Rio dataset (source: WV-3). The first two rows: the visual inspection of the ground-truth (GT) image
and the close-ups of the fused images. The last two rows: the residual maps using the GT image as a reference.

Figs. 6-7. Compared with the GT image, Fig. 6 reveals that465

the GLP-CBD, the GLP-FS, the CDIF, and our LRTCFPan466

methods obtain the better performance from both spectral467

and spatial perspectives. However, other comparators achieve468

inferior performance considering the overall or local feature469

evaluation. It is worth underlining that clearer details do not470

always mean superior performance, e.g., the images recovered471

by the C-GSA, the AWLP, and the MF-HG methods. That472

is because the details exceeding those of the GT image are473

regarded as errors. The performance of Fig. 7 is similar to that474

of Fig. 6. More specifically, the C-GSA, the GLP-CBD, the475

19’IF, the CDIF, and the proposed LRTCFPan methods achieve476

better visual performance. Nonetheless, the other compared477

methods reflect varying levels of color deviation and spatial478

blurring. From the corresponding residual images of Figs. 6-7,479

we can further confirm that the proposed LRTCFPan method is480

superior to other methods, clarifying its significant advantages.481

482

2) Full-Resolution Data Experiment: To corroborate the re-483

sults obtained at reduced resolution, the proposed LRTCFPan484

method is further evaluated at the real experimental images,485

which are cropped from the real datasets, including the real-486

world Guangzhou (sensor: GF-2), Indianapolis (sensor: QB),487

and Rio (sensor: WV-3) datasets. Subsequently, the visual488

performance is displayed in Figs. 8-9. In this case, the visual489

comparison requires the PAN image as the spatial reference,490

whereas the LR-MS image (or the recovered image of the491

EXP method) is the spectral reference. According to Fig. 8,492

although many compared approaches, e.g., the PRACS, the493

AWLP, the GLP-FS, the MF-HG, and the 19’IF, obtain clearer494

details, the inferior spectral fidelity is caused. Moreover, the495

C-GSA, the GLP-CBD, the 18’TIP, and the CDIF methods496

generate abnormal colors, structures, or artifacts. In contrast,497

the LRTCFPan and the BDSD-PC methods show the better498

trade-off between spatial sharpening and spectral consistency.499

From Fig. 9, we can observe that only the C-GSA, the BDSD-500

PC, the 19’IF, and the LRTCFPan methods can reconstruct the501

right shape and color of the acquired car. Especially, only the502

LRTCFPan method can recover the correct direction of the 503

shadow of the car. Therefore, the effectiveness and superiority 504

of the LRTCFPan method are corroborated at full resolution. 505

B. Quantitative Comparison 506

To quantitatively compare the LRTCFPan method with 507

other methods, we provide the average numerical metrics 508

of 82, 42, 15, 15, 15, and 42 images, which are selected 509

from the simulated Guangzhou (sensor: GF-2), the simulated 510

Indianapolis (sensor: QB), the simulated Rio (sensor: WV-3), 511

the real-world Guangzhou (sensor: GF-2), the real-world Indi- 512

anapolis (sensor: QB), and the real-world Rio (sensor: WV-3) 513

datasets, respectively. The statistical values of all the metrics 514

(means and related standard deviations) and the computational 515

times are shown in Tables I, II, III, IV-(a), IV-(b), and V. 516

Notably, the variational methods, i.e., the 18’TIP, the 19’IF, the 517

19’CVPR, the RR, the CDIF, the BAGDC, and the LRTCFPan, 518

are implemented using only one set of parameters for all 519

the experiments of the same dataset. Consequently, better 520

performance also implies higher robustness of the parameters. 521

From the results, we observe that the proposed LRTCFPan 522

method generally achieves better average values than the other 523

methods, demonstrating its numerical superiority. 524

C. Discussions 525

1) Parameter Analysis: In Algorithm 1, seven hyperparam- 526

eters are theoretically involved, including the regularization 527

parameters (i.e., λ1, λ2, and λ3), the penalty parameters (i.e., 528

η1, η2, and η3), and the blocksize of the block-based DDM 529

regularizer. Among them, λ3 and η1 control the low-tubal-rank 530

properties of X • B + N1 and X , respectively. Empirically, 531

λ3 and η1 can be pre-determined within a small range, e.g., 532

{10−4, 10−3, 10−2, 10−1}. Similarly, the blocksize can also be 533

selected from {8× 8, 10× 10}, showing promising results in 534

almost all the experiments. Afterwards, the remaining param- 535

eters, i.e., λ1, λ2, η2, and η3, are searched by jointly reaching 536

the optimal SAM, SCC, ERGAS, and Q2n metrics. For 537
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TABLE III
THE QUALITY METRICS ON 15 IMAGES WITH A PAN SIZE OF 256× 256 FROM THE REDUCED-RESOLUTION RIO DATASET (SOURCE: WV-3).

(BOLD: BEST; UNDERLINE: SECOND BEST)

Method PSNR SSIM SAM SCC ERGAS Q8 Runtime[s]

EXP [61] 27.409 ± 1.281 0.678 ± 0.054 7.472 ± 1.144 0.835 ± 0.044 8.441 ± 0.954 0.678 ± 0.034 0.02
PRACS [9] 30.615 ± 1.263 0.844 ± 0.028 7.704 ± 1.245 0.923 ± 0.018 5.871 ± 0.624 0.843 ± 0.012 0.16
C-GSA [62] 31.245 ± 1.051 0.853 ± 0.027 7.888 ± 1.408 0.928 ± 0.016 5.567 ± 0.548 0.862 ± 0.026 0.53
BDSD-PC [63] 31.521 ± 1.106 0.873 ± 0.021 7.443 ± 1.143 0.933 ± 0.015 5.313 ± 0.535 0.879 ± 0.018 0.08
AWLP [12] 31.182 ± 1.189 0.874 ± 0.020 7.109 ± 1.016 0.930 ± 0.016 5.412 ± 0.585 0.871 ± 0.007 0.18
GLP-CBD [60] 31.131 ± 1.235 0.879 ± 0.019 6.608 ± 0.891 0.929 ± 0.017 5.549 ± 0.545 0.877 ± 0.003 52.30
GLP-FS [64] 31.102 ± 1.070 0.861 ± 0.025 7.308 ± 1.230 0.930 ± 0.016 5.499 ± 0.538 0.865 ± 0.017 0.14
MF-HG [65] 30.884 ± 1.200 0.865 ± 0.026 7.067 ± 1.166 0.925 ± 0.018 5.664 ± 0.614 0.863 ± 0.011 0.25
18’TIP [32] 29.786 ± 1.178 0.812 ± 0.031 7.227 ± 1.124 0.912 ± 0.020 6.373 ± 0.685 0.825 ± 0.012 73.95
19’IF [35] 30.088 ± 1.108 0.841 ± 0.024 7.855 ± 1.173 0.921 ± 0.016 5.831 ± 0.574 0.840 ± 0.015 23.74
19’CVPR [25] 30.157 ± 1.413 0.838 ± 0.033 6.680 ± 1.034 0.920 ± 0.021 6.159 ± 0.718 0.829 ± 0.017 17.10
RR [66] 30.972 ± 1.103 0.870 ± 0.019 7.043 ± 1.018 0.928 ± 0.017 5.317 ± 0.583 0.867 ± 0.017 54.48
CDIF [49] 31.808 ± 1.395 0.883 ± 0.020 6.260 ± 0.851 0.938 ± 0.014 5.010 ± 0.522 0.891 ± 0.013 81.18
BAGDC [51] 30.881 ± 0.921 0.874 ± 0.018 7.276 ± 1.051 0.928 ± 0.015 5.388 ± 0.579 0.872 ± 0.018 1.16
LRTCFPan 32.251 ± 1.333 0.891 ± 0.018 6.132 ± 0.880 0.945 ± 0.015 4.834 ± 0.576 0.901 ± 0.004 57.15

Ideal value +∞ 1 0 1 0 1 -

TABLE IV
THE QUANTITATIVE RESULTS FOR ALL THE COMPARED METHODS ON (A) 15 IMAGES FROM THE FULL-RESOLUTION GUANGZHOU DATASET (SOURCE:

GF-2) AND (B) 15 IMAGES FROM THE FULL-RESOLUTION INDIANAPOLIS DATASET (SOURCE: QB). THE SIZE OF THE PAN IMAGE IS 400× 400.
(BOLD: BEST; UNDERLINE: SECOND BEST)

Method (a) Full-Resolution Guangzhou Dataset (b) Full-Resolution Indianapolis Dataset Time[s]
Dλ Ds QNR Dλ Ds QNR

EXP [61] 0.002 ± 0.001 0.163 ± 0.040 0.836 ± 0.040 0.003 ± 0.001 0.121 ± 0.022 0.877 ± 0.022 0.03
PRACS [9] 0.054 ± 0.018 0.063 ± 0.028 0.886 ± 0.041 0.038 ± 0.020 0.083 ± 0.038 0.883 ± 0.052 0.19
C-GSA [62] 0.100 ± 0.036 0.099 ± 0.045 0.812 ± 0.070 0.080 ± 0.058 0.137 ± 0.081 0.798 ± 0.118 0.68
BDSD-PC [63] 0.066 ± 0.029 0.077 ± 0.041 0.863 ± 0.065 0.029 ± 0.026 0.068 ± 0.031 0.906 ± 0.049 0.07
AWLP [12] 0.086 ± 0.071 0.090 ± 0.081 0.836 ± 0.132 0.061 ± 0.025 0.068 ± 0.035 0.876 ± 0.055 0.28
GLP-CBD [60] 0.078 ± 0.038 0.053 ± 0.043 0.874 ± 0.075 0.038 ± 0.029 0.048 ± 0.029 0.917 ± 0.055 62.19
GLP-FS [64] 0.090 ± 0.033 0.075 ± 0.053 0.843 ± 0.078 0.063 ± 0.027 0.069 ± 0.037 0.873 ± 0.058 0.14
MF-HG [65] 0.110 ± 0.058 0.106 ± 0.081 0.799 ± 0.119 0.072 ± 0.033 0.073 ± 0.033 0.861 ± 0.059 0.09
18’TIP [32] 0.070 ± 0.042 0.050 ± 0.037 0.884 ± 0.069 0.060 ± 0.060 0.058 ± 0.056 0.889 ± 0.105 111.31
19’IF [35] 0.167 ± 0.063 0.158 ± 0.092 0.706 ± 0.125 0.147 ± 0.072 0.201 ± 0.104 0.688 ± 0.141 34.14
19’CVPR [25] 0.006 ± 0.002 0.101 ± 0.028 0.893 ± 0.028 0.013 ± 0.007 0.071 ± 0.014 0.916 ± 0.020 40.83
RR [66] 0.107 ± 0.047 0.128 ± 0.049 0.781 ± 0.081 0.089 ± 0.066 0.112 ± 0.064 0.812 ± 0.111 44.57
CDIF [49] 0.032 ± 0.016 0.040 ± 0.018 0.929 ± 0.022 0.026 ± 0.013 0.031 ± 0.007 0.943 ± 0.015 90.74
BAGDC [51] 0.037 ± 0.025 0.042 ± 0.021 0.923 ± 0.040 0.031 ± 0.027 0.036 ± 0.023 0.935 ± 0.047 2.85
LRTCFPan 0.043 ± 0.018 0.019 ± 0.010 0.939 ± 0.021 0.020 ± 0.009 0.025 ± 0.011 0.955 ± 0.018 77.73

Ideal value 0 0 1 0 0 1 -

brevity, Fig. 10 presents the performance of varying λ1, λ2,538

η2, and η3 on the reduced-resolution Guangzhou data (source:539

GF-2). Obviously, λ1 = 5× 10−2, λ2 = 1.8× 101, η2 = 8.1,540

and η3 = 1.8 are the best parameters for configuration. By541

adopting the same strategy on different datasets, all parameter542

configurations can be obtained and provided in Table VI.543

2) Algorithm Convergence: Since the log tensor nuclear544

norm of Definition II.4 is non-convex, the convergence of the545

proposed ADMM-based LRTCFPan algorithm cannot be the-546

oretically guaranteed. As depicted in Fig. 11, we numerically547

illustrate the algorithm convergence on the reduced-resolution548

Guangzhou (sensor: GF-2), Indianapolis (sensor: QB), and549

Rio (sensor: WV-3) datasets. For a better presentation, the 550

maximum number of iterations is empirically set to 200. 551

In any considered case, the value of the objective function 552

becomes stable as the iteration number increases, implying 553

the numerical convergence behavior of Algorithm 1. 554

3) Ablation Study: For deeper insights into the LRTCFPan 555

model, we further conduct the ablation study of model (12) 556

on the reduced-resolution Guangzhou image (sensor: GF-2). 557

The following three sub-models are generated to independently 558

verify the contributions of the two low-tubal-rank priors and 559

the proposed local-similarity-based DDM regularizer. 560
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PAN EXP [61] PRACS [9] C-GSA [62]

BDSD-PC [63] AWLP [12] GLP-CBD [60] GLP-FS [64]

MF-HG [65] 18’TIP [32] 19’IF [35] 19’CVPR [25]

RR [66] CDIF [49] BAGDC [51] LRTCFPan

Fig. 8. The RGB compositions of the fused images on the full-resolution Guangzhou dataset (source: GF-2). The size of the PAN image is 400× 400. The
close-ups are depicted in the bottom corners of the images.

Submodel-I:

min
X ,T
‖X‖lt + λ1‖X − X • B − D‖2F + λ2‖X • B − T ‖2F

s.t. PΩ(T ) = Y ↑r,0,

Submodel-II:

min
X ,T
‖T ‖lt + λ1‖X − X • B − D‖2F + λ2‖X • B − T ‖2F

s.t. PΩ(T ) = Y ↑r,0,

Submodel-III:
min
X ,T
‖X‖lt + λ1‖X • B − T ‖2F + λ2‖T ‖lt

s.t. PΩ(T ) = Y ↑r,0.
After all optimal parameter configurations are satisfied, the 561

quantitative results of these models are reported in Table VII. 562

As observed, the models employing the local-similarity-based 563

DDM regularizer (i.e., Submodel-I and Submodel-II) perform 564

better, implying the remarkable effectiveness of the regularizer. 565
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PAN EXP [61] PRACS [9] C-GSA [62]

BDSD-PC [63] AWLP [12] GLP-CBD [60] GLP-FS [64]

MF-HG [65] 18’TIP [32] 19’IF [35] 19’CVPR [25]

RR [66] CDIF [49] BAGDC [51] LRTCFPan

Fig. 9. The RGB compositions of the fused images on the full-resolution Rio dataset (source: WV-3). The size of the PAN image is 400×400. The close-ups
are depicted in the bottom corners of the images.

Moreover, two low-tubal-rank priors also realize incremental566

performance improvements. Accordingly, the three regulariz-567

ers collectively contribute to the LRTCFPan model.568

4) Comparison of ISR Degradation Models: For decoupling569

the original Y = (X • B) ↓r +N0, the variable substitution570

is usually involved, e.g., [24], leading to the following con-571

strained model572

min
X ,Z

1

2
‖Z ↓r −Y‖2F s.t. Z = X • B, (38)

whose augmented Lagrangian function is 573

L(X ,Z) =
1

2
‖Z ↓r −Y‖2F +

η

2

∥∥∥∥X • B − Z +
Λ

η

∥∥∥∥2

F

. (39)

However, when the new ISR degradation model Y = (X •B+ 574

N1) ↓r is employed, we only need to consider the augmented 575

Lagrangian function as follows, 576

L(X , T ) =
1

2
‖X • B − T ‖2F + ι(T ). (40)
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TABLE V
THE QUALITY METRICS FOR 42 IMAGES FROM THE FULL-RESOLUTION

RIO DATASET (SOURCE: WV-3). THE SIZE OF THE PAN IMAGE IS
400× 400. (BOLD: BEST; UNDERLINE: SECOND BEST)

Method Dλ Ds QNR Time[s]

EXP [61] 0.004 ± 0.001 0.105 ± 0.019 0.892 ± 0.019 0.06
PRACS [9] 0.018 ± 0.013 0.054 ± 0.035 0.928 ± 0.040 0.51
C-GSA [62] 0.044 ± 0.038 0.075 ± 0.064 0.887 ± 0.086 0.94
BDSD-PC [63] 0.020 ± 0.011 0.044 ± 0.021 0.937 ± 0.029 0.14
AWLP [12] 0.051 ± 0.057 0.058 ± 0.072 0.898 ± 0.101 0.57
GLP-CBD [60] 0.065 ± 0.084 0.046 ± 0.037 0.894 ± 0.100 119.49
GLP-FS [64] 0.045 ± 0.047 0.056 ± 0.064 0.904 ± 0.091 0.26
MF-HG [65] 0.053 ± 0.050 0.064 ± 0.055 0.889 ± 0.087 0.18
18’TIP [32] 0.035 ± 0.030 0.067 ± 0.041 0.902 ± 0.060 212.45
19’IF [35] 0.087 ± 0.043 0.096 ± 0.048 0.828 ± 0.080 55.94
19’CVPR [25] 0.016 ± 0.006 0.046 ± 0.012 0.939 ± 0.016 73.26
RR [66] 0.062 ± 0.052 0.086 ± 0.077 0.861 ± 0.103 102.93
CDIF [49] 0.028 ± 0.009 0.048 ± 0.016 0.926 ± 0.018 182.18
BAGDC [51] 0.060 ± 0.055 0.048 ± 0.048 0.898 ± 0.088 4.60
LRTCFPan 0.022 ± 0.013 0.022 ± 0.027 0.956 ± 0.036 153.51

Ideal value 0 0 1 -
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Fig. 10. The SAM, SCC, ERGAS, and Q4 curves for (a) λ1, (b) λ2, (c) η2,
and (d) η3 on a reduced-resolution Guangzhou image (sensor: GF-2). To show
them with the same range of values, the obtained indexes are post-processed
by zero-mean normalization, i.e., (index − Mean(index))/Std(index).
Moreover, the means and the standard deviations of the SAM, the SCC, the
ERGAS, and the Q4 are provided for four subfigures, i.e., (a) 2.341±0.467;
0.947 ± 0.017; 2.897 ± 0.596; 0.812 ± 0.069, (b) 14.913 ± 9.950;
0.588 ± 0.298; 19.503 ± 9.366; 0.267 ± 0.362, (c) 3.515 ± 3.335;
0.904± 0.120; 13.638± 11.367; 0.494± 0.438, and (d) 10.008± 8.247;
0.500± 0.405; 17.518± 10.917; 0.358± 0.394.

Under the ADMM algorithm framework, the proposed ISR577

degradation model avoids the computational complexity (i.e.,578

O(HWS)) of solving 1
2 ‖Z ↓r −Y‖

2
F . As depicted in Fig. 12,579

the computational times are reduced. Moreover, since the580

downsampling operator ↓r is eliminated by the tensor comple-581

tion step, the matrixization of ↓r is not included in the resulting582

model. Consequently, the proposed LRTCFPan model can be583

formulated in the tensor-based form, which is more physically584

intuitive than the matrix-based modeling or the mixture of585

TABLE VI
THE HYPER-PARAMETER SETTINGS OF THE PROPOSED MODEL FOR

DIFFERENT CASES. (R: REDUCED RESOLUTION; F: FULL RESOLUTION)

Dataset Case λ1 λ2 λ3 η1 η2 η3 Blocksize

Guangzhou
R 0.05 18 10−4 10−4 8.1 1.8 8× 8

F 1.00 50 10−4 10−4 2.1 4.7 10× 10

Indianapolis
R 0.11 65 10−4 10−4 1.1 8.7 8× 8

F 0.40 75 10−1 10−3 2.1 6.7 10× 10

Rio
R 0.14 56 10−4 10−4 4.2 8.3 8× 8

F 1.10 36 10−4 10−4 6.2 3.3 10× 10
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Fig. 11. The curves of the objective function values on the reduced-resolution
(a) Guangzhou (sensor: GF-2), (b) Indianapolis (sensor: QB), and (c) Rio
(sensor: WV-3) datasets.
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Fig. 12. The comparison of the computational burden between two ISR
degeneration models by using two different cases, i.e., (a) the runtime versus
the number of iterations when the spatial size of the LR-MS image is 64×64
and (b) the runtime versus the spatial size of the LR-MS image when the
number of iterations is fixed to 200. The reduced-resolution Guangzhou
dataset (source: GF-2) is employed.

unfolding-based and tensor-based modeling, e.g., [39]. 586

5) Applicable Scope: Since the proposed LRTCFPan model 587

incorporates the low-tubal-rank prior, we further perform the 588

applicability analysis by investigating the tubal-rank character- 589

istic of numerous multispectral images. For such a statistical 590

analysis, all simulated experimental data, i.e., 82 Guangzhou 591

images (sensor: GF-2), 42 Indianapolis images (sensor: QB), 592

and 15 Rio images (sensor: WV-3), are employed. According 593

to Fig. 13, the corresponding multispectral images demonstrate 594

specific low-rank characteristics. Consequently, the applicabil- 595

ity of the proposed LRTCFPan model can be established. 596

6) Comparison with CNN-based Method: In the previous 597

numerical experiments, only the traditional CS, MRA, and 598

variational pansharpening methods are involved. To compre- 599

hensively demonstrate the performance, we further compare 600

the proposed LRTCFPan model with the CNN-based DCFNet 601

method [73] on all reduced-resolution data, i.e., 82 Guangzhou 602

images (sensor: GF-2), 42 Indianapolis images (sensor: QB), 603

and 15 Rio images (sensor: WV-3). Particularly, the pretraining 604

datasets of the DCFNet model for the GF-2, QB, and WV- 605

3 cases are the Beijing (sensor: GF-2), Indianapolis (sensor: 606
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TABLE VII
THE QUANTITATIVE RESULTS OF THE ABLATION EXPERIMENT ON THE REDUCED-RESOLUTION GUANGZHOU DATA (SOURCE: GF-2).

(BOLD: BEST; UNDERLINE: SECOND BEST)

Configuration
ISR

Degradation
Model

Low-Rank Prior
for X • B +N1

Low-Rank Prior
for X

Local-Similarity-Based
DDM Regularizer PSNR SSIM SAM SCC ERGAS Q4

EXP [61] ! % % % 29.3053 0.8016 2.4860 0.9429 3.1620 0.8360
Submodel-I ! % ! ! 35.0918 0.9150 2.0104 0.9802 1.6582 0.9359
Submodel-II ! ! % ! 34.9260 0.9109 2.0373 0.9794 1.6971 0.9327
Submodel-III ! ! ! % 29.9401 0.7899 2.5329 0.9494 2.9143 0.8332
LRTCFPan ! ! ! ! 35.1550 0.9155 2.0089 0.9803 1.6470 0.9364

Ideal value - - - - +∞ 1 0 1 0 1

TABLE VIII
THE QUALITY METRICS OF DIFFERENT METHODS ON THE REDUCED-RESOLUTION GUANGZHOU (SENSOR: GF-2), INDIANAPOLIS (SENSOR: QB), AND

RIO (SENSOR: WV-3) DATASETS. (BOLD: BEST; UNDERLINE: SECOND BEST)

Dataset Sensor Method PSNR SSIM SAM SCC ERGAS Q2n

Guangzhou GF-2
DCFNet [73] 34.695 ± 1.450 0.899 ± 0.018 1.834 ± 0.265 0.957 ± 0.017 1.598 ± 0.179 0.898 ± 0.042
LRTCFPan 35.918 ± 2.087 0.921 ± 0.022 1.391 ± 0.274 0.968 ± 0.014 1.496 ± 0.275 0.926 ± 0.039

Indianapolis QB
DCFNet [73] 31.295 ± 2.231 0.877 ± 0.022 6.002 ± 0.914 0.896 ± 0.018 8.105 ± 0.890 0.848 ± 0.095
LRTCFPan 32.727 ± 2.132 0.873 ± 0.025 7.032 ± 1.264 0.922 ± 0.016 6.964 ± 0.596 0.861 ± 0.092

Rio WV-3
DCFNet [73] 36.692 ± 0.494 0.964 ± 0.006 3.699 ± 0.723 0.982 ± 0.004 2.388 ± 0.625 0.971 ± 0.010
LRTCFPan 32.251 ± 1.333 0.891 ± 0.018 6.132 ± 0.880 0.945 ± 0.015 4.834 ± 0.576 0.901 ± 0.004

Ideal value +∞ 1 0 1 0 1
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Fig. 13. The statistics of the approximation of the tubal rank on different
simulated datasets, including (a) 82 Guangzhou images (sensor: GF-2), (b)
42 Indianapolis images (sensor: QB), and (c) 15 Rio images (sensor: WV-3).
The standard deviation of Gaussian noise is 0.01.

QB), and both Rio and Tripoli (sensor: WV-3), respectively.607

The numerical metrics are reported in Table VIII. For the608

WV-3 case, the DCFNet method is significantly superior to609

the LRTCFPan method, which is reasonable provided that the610

Rio dataset is included in the training data of the former.611

Furthermore, when applied to the Indianapolis dataset (testing612

images), the DCFNet method does not exhibit the advantage613

over the LRTCFPan method, even if the former is pretrained614

on the Indianapolis dataset. Instead, the DCFNet method is615

inferior to the LRTCFPan method on the Guangzhou dataset616

owing to its limited generalization ability. Consequently, the617

superior algorithm robustness and generalization capability of618

the LRTCFPan method are mainly demonstrated, which may619

endow such a method with more practical significance.620

VI. CONCLUSIONS 621

In this paper, we proposed a novel LRTC-based framework 622

for pansharpening, called LRTCFPan. Specifically, we first 623

deduced an ISR degradation model, thus eliminating the down- 624

sampling operator and transforming the original pansharpening 625

problem into the LRTC-based framework with the deblurring 626

regularizer. Moreover, we designed a local-similarity-based 627

DDM regularizer, which dynamically and locally integrates the 628

spatial information from the PAN image to the underlying HR- 629

MS image. For better completion and global characterization, 630

two low-tubal-rank constraints are simultaneously imposed. 631

To regularize the proposed model, we developed an efficient 632

ADMM-based algorithm. The numerical experiments demon- 633

strated the superiority of the proposed LRTCFPan method. 634

REFERENCES 635

[1] M. Zanetti, F. Bovolo, and L. Bruzzone, “Rayleigh-Rice mixture param- 636

eter estimation via EM algorithm for change detection in multispectral 637

images,” IEEE Trans. Image Process., vol. 24, no. 12, pp. 5004–5016, 638

2015. 1 639

[2] X. Yu, L. E. Hoff, I. S. Reed, A. M. Chen, and L. B. Stotts, “Automatic 640

target detection and recognition in multiband imagery: A unified ML 641

detection and estimation approach,” IEEE Trans. Image Process., vol. 642

6, no. 1, pp. 143–156, 1997. 1 643

[3] P. Zhong and R. Wang, “Learning conditional random fields for 644

classification of hyperspectral images,” IEEE Trans. Image Process., 645

vol. 19, no. 7, pp. 1890–1907, 2010. 1 646

[4] P. X. Zhuang, Q. S. Liu, and X. H. Ding, “Pan-GGF: A probabilistic 647

method for pan-sharpening with gradient domain guided image filtering,” 648

Signal Process., vol. 156, pp. 177–190, 2019. 1 649

[5] P. Kwarteng and A. Chavez, “Extracting spectral contrast in landsat the- 650

matic mapper image data using selective principal component analysis,” 651

Photogramm. Eng. Remote Sens., vol. 55, no. 1, pp. 339–348, 1989. 1 652

[6] W. Carper, T. Lillesand, and R. Kiefer, “The use of intensity-hue- 653

saturation transformations for merging SPOT panchromatic and multi- 654

spectral image data,” Photogramm. Eng. Remote Sens., vol. 56, no. 4, 655

pp. 459–467, 1990. 1 656



15

[7] B. Aiazzi, S. Baronti, and M. Selva, “Improving component substitution657

pansharpening through multivariate regression of MS + Pan data,” IEEE658

Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3230–3239, 2007. 1659

[8] A. Garzelli, F. Nencini, and L. Capobianco, “Optimal MMSE pan660

sharpening of very high resolution multispectral images,” IEEE Trans.661

Geosci. Remote Sens., vol. 46, no. 1, pp. 228–236, 2007. 1662

[9] J. Choi, K. Yu, and Y. Kim, “A new adaptive component-substitution-663

based satellite image fusion by using partial replacement,” IEEE Trans.664

Geosci. Remote Sens., vol. 49, no. 1, pp. 295–309, 2010. 1, 7, 8, 9, 10,665

11, 12, 13666

[10] G. Vivone, L. Alparone, J. Chanussot, M. Dalla Mura, A. Garzelli, G. A.667

Licciardi, R. Restaino, and L. Wald, “A critical comparison among668

pansharpening algorithms,” IEEE Trans. Geosci. Remote Sens., vol. 53,669

no. 5, pp. 2565–2586, 2014. 1, 4670

[11] M. J. Shensa, “The discrete wavelet transform: Wedding the a trous and671

Mallat algorithms,” IEEE Trans. Signal Process., vol. 40, no. 10, pp.672

2464–2482, 1992. 1673

[12] X. Otazu, M. Gonzalezaudicana, O. Fors, and J. Nunez, “Introduction674

of sensor spectral response into image fusion methods. Application to675

wavelet-based methods,” IEEE Trans. Geosci. Remote Sens., vol. 43,676

no. 10, pp. 2376–2385, 2005. 1, 7, 8, 9, 10, 11, 12, 13677

[13] J. G. Liu, “Smoothing filter-based intensity modulation: A spectral678

preserve image fusion technique for improving spatial details,” Int. J.679

Remote Sens., vol. 21, no. 18, pp. 3461–3472, 2000. 1680

[14] J. F. Yang, X. Y. Fu, Y. W. Hu, Y. Huang, X. H. Ding, and J. Paisley,681

“PanNet: A deep network architecture for pan-sharpening,” in Int. Conf.682

Comput. Vision (ICCV), 2017, pp. 5449–5457. 2683

[15] J. F. Hu, T. Z. Huang, L. J. Deng, T. X. Jiang, G. Vivone, and J. Chanus-684

sot, “Hyperspectral image super-resolution via deep spatiospectral685

attention convolutional neural networks,” IEEE Trans. Neural Netw.686

Learn. Syst., pp. 1–15, 2021. 2687

[16] Z. Zhu, J. Hou, J. Chen, H. Zeng, and J. Zhou, “Hyperspectral image688

super-resolution via deep progressive zero-centric residual learning,”689

IEEE Trans. Image Process., vol. 30, pp. 1423–1438, 2020. 2690

[17] T. Huang, W. Dong, J. Wu, L. Li, X. Li, and G. Shi, “Deep hyperspectral691

image fusion network with iterative spatio-spectral regularization,” IEEE692

Trans. Comput. Imaging, vol. 8, pp. 201–214, 2022. 2693

[18] L. J. Deng, G. Vivone, C. Jin, and J. Chanussot, “Detail injection-based694

deep convolutional neural networks for pansharpening,” IEEE Trans.695

Geosci. Remote Sens., vol. 59, no. 8, pp. 6995–7010, 2020. 2, 4696

[19] P. Addesso, G. Vivone, R. Restaino, and J. Chanussot, “A data-driven697

model-based regression applied to panchromatic sharpening,” IEEE698

Trans. Image Process., vol. 29, pp. 7779–7794, 2020. 2699

[20] Z. R. Jin, L. J. Deng, T. J. Zhang, and X. X. Jin, “BAM: Bilateral acti-700

vation mechanism for image fusion,” in ACM Int. Conf. on Multimedia701

(ACM MM), 2021. 2702

[21] Y. D. Wang, L. J. Deng, T. J. Zhang, and X. Wu, “SSconv: Explicit703

spectral-to-spatial convolution for pansharpening,” in ACM Int. Conf.704

on Multimedia (ACM MM), 2021. 2705

[22] X. Y. Fu, W. Wang, Y. Huang, X. H. Ding, and J. Paisley, “Deep706

multiscale detail networks for multiband spectral image sharpening,”707

IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 5, pp. 2090–2104,708

2021. 2709

[23] X. Lu, J. Zhang, D. Yang, L. Xu, and F. Jia, “Cascaded convolutional710

neural network-based hyperspectral image resolution enhancement via711

an auxiliary panchromatic image,” IEEE Trans. Image Process., vol. 30,712

pp. 6815–6828, 2021. 2713

[24] Z. C. Wu, T. Z. Huang, L. J. Deng, J. F. Hu, and G. Vivone, “VO+Net:714

An adaptive approach using variational optimization and deep learning715

for panchromatic sharpening,” IEEE Trans. Geosci. Remote Sens., vol.716

60, pp. 1–16, 2022. 2, 3, 4, 12717

[25] X. Y. Fu, Z. H. Lin, Y. Huang, and X. H. Ding, “A variational pan-718

sharpening with local gradient constraints,” in IEEE Conf. Comput.719

Vision Pattern Recognit. (CVPR), 2019, pp. 10265–10274. 2, 7, 8, 9,720

10, 11, 12, 13721

[26] F. Fang, F. Li, C. Shen, and G. Zhang, “A variational approach for pan-722

sharpening,” IEEE Trans. Image Process., vol. 22, no. 7, pp. 2822–2834,723

2013. 2724

[27] X. He, L. Condat, J. M. Bioucas-Dias, J. Chanussot, and J. Xia, “A725

new pansharpening method based on spatial and spectral sparsity priors,”726

IEEE Trans. Image Process., vol. 23, no. 9, pp. 4160–4174, 2014. 2727

[28] H. A. Aly and G. Sharma, “A regularized model-based optimization728

framework for pan-sharpening,” IEEE Trans. Image Process., vol. 23,729

no. 6, pp. 2596–2608, 2014. 2730

[29] C. Chen, Y. Li, W. Liu, and J. Huang, “SIRF: Simultaneous satellite731

image registration and fusion in a unified framework,” IEEE Trans.732

Image Process., vol. 24, no. 11, pp. 4213–4224, 2015. 2733

[30] C. Ballester, V. Caselles, L. Igual, J. Verdera, and B. Rouge, “A 734

variational model for P+XS image fusion,” Int. J. Comput. Vis., vol. 735

69, no. 1, pp. 43–58, 2006. 2 736

[31] Y. Y. Jiang, X. H. Ding, D. L. Zeng, Y. Huang, and J. Paisley, “Pan- 737

sharpening with a hyper-Laplacian penalty,” in Int. Conf. Comput. Vision 738

(ICCV), 2015, pp. 540–548. 2 739

[32] T. Wang, F. Fang, F. Li, and G. Zhang, “High-quality Bayesian 740

pansharpening,” IEEE Trans. Image Process., vol. 28, no. 1, pp. 227– 741

239, 2018. 2, 7, 8, 9, 10, 11, 12, 13 742

[33] L. J. Deng, G. Vivone, W. H. Guo, M. Dalla Mura, and J. Chanussot, 743

“A variational pansharpening approach based on reproducible Kernel 744

Hilbert space and Heaviside function,” IEEE Trans. Image Process., 745

vol. 27, no. 9, pp. 4330–4344, 2018. 2 746

[34] A. M. Teodoro, J. M. Bioucas-Dias, and M. A. Figueiredo, “A con- 747

vergent image fusion algorithm using scene-adapted Gaussian-mixture- 748

based denoising,” IEEE Trans. Image Process., vol. 28, no. 1, pp. 451– 749

463, 2018. 2 750

[35] L. J. Deng, M. Y. Feng, and X. C. Tai, “The fusion of panchromatic and 751

multispectral remote sensing images via tensor-based sparse modeling 752

and hyper-Laplacian prior,” Inf. Fusion, vol. 52, pp. 76–89, 2019. 2, 7, 753

8, 9, 10, 11, 12, 13 754

[36] Z. C. Wu, T. Z. Huang, L. J. Deng, G. Vivone, J. Q. Miao, J. F. 755

Hu, and X. L. Zhao, “A new variational approach based on proximal 756

deep injection and gradient intensity similarity for spatio-spectral image 757

fusion,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 758

6277–6290, 2020. 2, 6 759

[37] Q. Wei, N. Dobigeon, and J. Y. Tourneret, “Fast fusion of multi-band 760

images based on solving a Sylvester equation,” IEEE Trans. Image 761

Process., vol. 24, no. 11, pp. 4109–4121, 2015. 2, 3 762

[38] R. W. Dian, S. T. Li, A. J. Guo, and L. Y. Fang, “Deep hyperspectral 763

image sharpening,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 764

99, pp. 1–11, 2018. 2 765

[39] R. W. Dian and S. T. Li, “Hyperspectral image super-resolution via 766

subspace-based low tensor multi-rank regularization,” IEEE Trans. 767

Image Process., vol. 28, no. 10, pp. 5135–5146, 2019. 2, 3, 13 768

[40] M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover, “Third- 769

order tensors as operators on matrices: A theoretical and computational 770

framework with applications in imaging,” SIAM J. Matrix Anal. Appl., 771

vol. 34, no. 1, pp. 148–172, 2013. 2, 3, 5 772

[41] M. E. Kilmer and C. D. Martin, “Factorization strategies for third-order 773

tensors,” Linear Alg. Appl., vol. 435, no. 3, pp. 641–658, 2011. 3 774

[42] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer, “Novel methods for 775

multilinear data completion and de-noising based on tensor-SVD,” in 776

IEEE Conf. Comput. Vision Pattern Recognit. (CVPR), 2014, pp. 3842– 777

3849. 3 778

[43] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, “Tensor robust 779

principal component analysis with a new tensor nuclear norm,” IEEE 780

Trans. Pattern Anal. Mach. Intell., vol. 42, no. 4, pp. 925–938, 2020. 3 781

[44] Y. B. Zheng, T. Z. Huang, X. L. Zhao, T. X. Jiang, T. H. Ma, and T. Y. 782

Ji, “Mixed noise removal in hyperspectral image via low-fibered-rank 783

regularization,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1, pp. 784

734–749, 2020. 3, 5 785

[45] Y. B. Zheng, T. Z. Huang, T. Y. Ji, X. L. Zhao, T. X. Jiang, and T. H. 786

Ma, “Low-rank tensor completion via smooth matrix factorization,” 787

Appl. Math. Model., vol. 70, pp. 677–695, 2019. 3 788

[46] X. L. Zhao, W. H. Xu, T. X. Jiang, Y. Wang, and M. Ng, “Deep plug- 789

and-play prior for low-rank tensor completion,” Neurocomputing, vol. 790

400, pp. 137–149, 2020. 3 791

[47] K. Zhang, W. Zuo, and L. Zhang, “Deep plug-and-play super-resolution 792

for arbitrary blur kernels,” in IEEE Conf. Comput. Vision Pattern 793

Recognit. (CVPR), 2019, pp. 1671–1681. 3 794

[48] Q. Song, R. Xiong, D. Liu, Z. Xiong, F. Wu, and W. Gao, “Fast image 795

super-resolution via local adaptive gradient field sharpening transform,” 796

IEEE Trans. Image Process., vol. 27, no. 4, pp. 1966–1980, 2018. 3 797

[49] J. L. Xiao, T. Z. Huang, L. J. Deng, Z. C. Wu, and G. Vivone, “A 798

new context-aware details injection fidelity with adaptive coefficients 799

estimation for variational pansharpening,” IEEE Trans. Geosci. Remote 800

Sens., 2022. 3, 7, 8, 9, 10, 11, 12, 13 801

[50] L. Loncan, L. B. Almeida, J. M. Bioucasdias, X. Briottet, et al., 802

“Hyperspectral pansharpening: A Review,” IEEE Geosci. Remote Sens. 803

Mag., vol. 3, no. 3, pp. 27–46, 2015. 4 804

[51] H. Lu, Y. Yang, S. Huang, W. Tu, and W. Wan, “A unified pansharpening 805

model based on band-adaptive gradient and detail correction,” IEEE 806

Trans. Image Process., vol. 31, pp. 918–933, 2022. 4, 7, 8, 9, 10, 11, 807

12, 13 808

[52] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of 809

products,” J. Math. Phys., vol. 6, no. 1-4, pp. 164–189, 1927. 5 810



16

[53] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”811

Psychometrika, vol. 31, no. 3, pp. 279–311, 1966. 5812

[54] C. I. Kanatsoulis, X. Fu, N. D. Sidiropoulos, and W. K. Ma, “Hyper-813

spectral super-resolution: A coupled tensor factorization approach,”814

IEEE Trans. Signal Process., vol. 66, no. 24, pp. 6503–6517, 2018.815

5816

[55] C. Prévost, K. Usevich, P. Comon, and D. Brie, “Hyperspectral super-817

resolution with coupled Tucker approximation: Recoverability and SVD-818

based algorithms,” IEEE Trans. Signal Process., vol. 68, pp. 931–946,819

2020. 5820

[56] M. Ashraphijuo and X. Wang, “Fundamental conditions for low-CP-rank821

tensor completion,” J. Mach. Learn. Res., vol. 18, no. 1, pp. 2116–2145,822

2017. 5823

[57] Y. Liu, Z. Long, H. Huang, and C. Zhu, “Low CP rank and Tucker rank824

tensor completion for estimating missing components in image data,”825

IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 4, pp. 944–954,826

2019. 5827

[58] X. Y. Liu, S. Aeron, V. Aggarwal, and X. Wang, “Low-tubal-rank tensor828

completion using alternating minimization,” IEEE Trans. Inf. Theory,829

vol. 66, no. 3, pp. 1714–1737, 2019. 5830

[59] T. G. Kolda, “Orthogonal tensor decompositions,” SIAM J. Matrix Anal.831

Appl., vol. 23, no. 1, pp. 243–255, 2001. 5832

[60] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, “MTF-833

tailored multiscale fusion of high-resolution MS and Pan imagery,”834

Photogramm. Eng. Remote Sens., vol. 72, no. 5, pp. 591–596, 2006.835

6, 7, 8, 9, 10, 11, 12, 13836

[61] B. Aiazzi, L. Alparone, S. Baronti, and A. Garzelli, “Context-driven837

fusion of high spatial and spectral resolution images based on oversam-838

pled multiresolution analysis,” IEEE Trans. Geosci. Remote Sens., vol.839

40, no. 10, pp. 2300–2312, 2002. 7, 8, 9, 10, 11, 12, 13, 14840

[62] R. Restaino, M. Dalla Mura, G. Vivone, and J. Chanussot, “Context-841

adaptive pansharpening based on image segmentation,” IEEE Trans.842

Geosci. Remote Sens., vol. 55, no. 2, pp. 753–766, 2016. 7, 8, 9, 10,843

11, 12, 13844

[63] G. Vivone, “Robust band-dependent spatial-detail approaches for845

panchromatic sharpening,” IEEE Trans. Geosci. Remote Sens., vol. 57,846

no. 9, pp. 6421–6433, 2019. 7, 8, 9, 10, 11, 12, 13847

[64] G. Vivone, R. Restaino, and J. Chanussot, “Full scale regression-based848

injection coefficients for panchromatic sharpening,” IEEE Trans. Image849

Process., vol. 27, no. 7, pp. 3418–3431, 2018. 7, 8, 9, 10, 11, 12, 13850

[65] R. Restaino, G. Vivone, M. Dalla Mura, and J. Chanussot, “Fusion851

of multispectral and panchromatic images based on morphological852

operators,” IEEE Trans. Image Process., vol. 25, no. 6, pp. 2882–2895,853

2016. 7, 8, 9, 10, 11, 12, 13854

[66] F. Palsson, M. O. Ulfarsson, and J. R. Sveinsson, “Model-based reduced-855

rank pansharpening,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 4,856

pp. 656–660, 2019. 7, 8, 9, 10, 11, 12, 13857

[67] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image858

quality assessment: From error visibility to structural similarity,” IEEE859

Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004. 7860

[68] R. H. Yuhas, A. F. H. Goetz, and J. W. Boardman, “Discrimination861

among semi-arid landscape endmembers using the spectral angle mapper862

(SAM) algorithm,” in Proc. Summaries 3rd Annu. JPL Airborne Geosci.863

Workshop, 1992, vol. 1, pp. 147–149. 7864

[69] L. Alparone, L. Wald, J. Chanussot, C. Thomas, P. Gamba, and L. M.865

Bruce, “Comparison of pansharpening algorithms: Outcome of the 2006866

GRS-S data-fusion contest,” IEEE Trans. Geosci. Remote Sens., vol. 45,867

no. 10, pp. 3012–3021, 2007. 8868

[70] L. Alparone, S. Baronti, A. Garzelli, and F. Nencini, “A global quality869

measurement of pan-sharpened multispectral imagery,” IEEE Geosci.870

Remote Sens. Lett., vol. 1, no. 4, pp. 313–317, 2004. 8871

[71] L. Alparone, B. Aiazzi, S. Baronti, A. Garzelli, F. Nencini, and M. Selva,872

“Multispectral and panchromatic data fusion assessment without refer-873

ence,” Photogramm. Eng. Remote Sens., vol. 74, no. 2, pp. 193–200,874

2008. 8875

[72] G. Vivone, R. Restaino, M. Dalla Mura, G. Licciardi, and J. Chanus-876

sot, “Contrast and error-based fusion schemes for multispectral image877

pansharpening,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 5, pp.878

930–934, 2013. 8879

[73] X. Wu, T. Z. Huang, L. J. Deng, and T. J. Zhang, “Dynamic cross880

feature fusion for remote sensing pansharpening,” in Int. Conf. Comput.881

Vision (ICCV), 2021, pp. 14687–14696. 13, 14882


