Tensor Wheel Decomposition and Its Tensor Completion Application

Zhong-Cheng Wu ${ }^{1}$

Ting-Zhu Huang*,1, Liang-Jian Deng*,1, Hong-Xia Dou², Deyu Meng ${ }^{3,4}$
${ }^{1}$ University of Electronic Science and Technology of China
${ }^{2}$ Xihua University
${ }^{3} X i$ 'an Jiaotong University
${ }^{4}$ Pazhou Laboratory (Huangpu)
> Background and Related Works
$>$ Motivation and TW Decomposition
> Numerical Application to Tensor Completion
> Experimental Results

Outline

> Background and Related Works

> Motivation and TW Decomposition

> Numerical Application to Tensor Completion

> Experimental Results

Background: Tensor Decompositions

Related Works: Tensor Networks

(a) TT decomposition

(b) TR decomposition

(c) FCTN decomposition

> Background and Related Works

> Motivation and TW Decomposition

> Numerical Application to Tensor Completion

> Experimental Results

Motivation

TT format

TR format

What topology?

If higher characterization capability

If smaller edge scaling

Tensor Wheel (TW) Decomposition

Wheel topology

- element-wise relation:

$$
\begin{aligned}
\mathcal{X}\left(i_{1}, i_{2}, \cdots, i_{N}\right)=\sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \cdots \sum_{r_{N}=1}^{R_{N}} \sum_{l_{1}=1}^{L_{1}} \cdots \sum_{l_{N}=1}^{L_{N}}\left\{\mathcal{G}_{1}\left(r_{1}, i_{1}, l_{1}, r_{2}\right) \mathcal{G}_{2}\left(r_{2}, i_{2}, l_{2}, r_{3}\right) \cdots\right. \\
\left.\mathcal{G}_{k}\left(r_{k}, i_{k}, l_{k}, r_{k+1}\right) \cdots \mathcal{G}_{N}\left(r_{N}, i_{N}, l_{N}, r_{1}\right) \mathcal{C}\left(l_{1}, l_{2}, \cdots, l_{N}\right)\right\} .
\end{aligned}
$$

Tensor Wheel (TW) Decomposition

- tensor-form relation:

$$
\mathcal{X}=\mathcal{G}_{1} \times{ }_{1}^{4} \mathcal{G}_{2} \times{ }_{1}^{6} \cdots \times_{1}^{2 k} \mathcal{G}_{k} \times_{1}^{2 k+2} \cdots \times_{1,4}^{2 N, 1} \mathcal{G}_{N} \times_{1,2, \cdots, N}^{2,4, \cdots, 2 N} \mathcal{C} .
$$

Outline

> Background and Related Works

> Motivation and TW Decomposition

> Numerical Application to Tensor Completion
> Experimental Results

TW-TC Model and PAM-based Algorithm

- TW-TC model:

$$
\min _{\mathcal{X}, \mathcal{G}_{1: N}, \mathcal{C}} \frac{1}{2}\left\|\mathcal{X}-\operatorname{TW} \llbracket\left\{\mathcal{G}_{k}\right\}_{k=1}^{N} ; \mathcal{C} \rrbracket\right\|_{F}^{2}+\iota(\mathcal{X}) \text { with } \iota(\mathcal{X}):= \begin{cases}0, & \mathcal{X} \in\left\{\mathcal{L}: \mathcal{P}_{\Omega}(\mathcal{L})=\mathcal{P}_{\Omega}(\mathcal{F})\right\} ; \\ \infty, & \text { otherwise }\end{cases}
$$

- Iterative algorithm:

$$
\left\{\begin{array}{l}
\mathcal{G}_{k}^{(t+1)} \in \underset{\mathcal{G}_{k}}{\arg \min }\left\{\frac{1}{2}\left\|\mathcal{X}^{(t)}-\mathrm{TW} \llbracket \mathcal{G}_{1: k-1}^{(t+1)}, \mathcal{G}_{k}, \mathcal{G}_{k+1: N}^{(t)} ; \mathcal{C}^{(t)} \rrbracket\right\|_{F}^{2}+\frac{\rho}{2}\left\|\mathcal{G}_{k}-\mathcal{G}_{k}^{(t)}\right\|_{F}^{2}\right\}, \\
\mathcal{C}^{(t+1)} \in \underset{\mathcal{C}}{\arg \min }\left\{\frac{1}{2}\left\|\mathcal{X}^{(t)}-\mathrm{TW} \llbracket \mathcal{G}_{1: N}^{(t+1)} ; \mathcal{C} \rrbracket\right\|_{F}^{2}+\frac{\rho}{2}\left\|\mathcal{C}-\mathcal{C}^{(t)}\right\|_{F}^{2}\right\} \\
\mathcal{X}^{(t+1)} \in \underset{\mathcal{X}}{\arg \min }\left\{\frac{1}{2}\left\|\mathcal{X}-\mathrm{TW} \llbracket \mathcal{G}_{1: N}^{(t+1)} ; \mathcal{C}^{(t+1)} \rrbracket\right\|_{F}^{2}+\frac{\rho}{2}\left\|\mathcal{X}-\mathcal{X}^{(t)}\right\|_{F}^{2}+\iota(\mathcal{X})\right\}
\end{array}\right.
$$

Outline

> Background and Related Works

> Motivation and TW Decomposition

$>$ Numerical Application to Tensor Completion

- Experimental Results

Synthetic Data Completion

Real-world Data Completion: Visualization

Real-world Data Completion: Numeralization

Data Index	-	Method						
		Observed	LRTC []	SVD [33	MacTT	RLRF	TN-TC	TW-TC
Toy	5\%	11.156	19.446	25.379	27.596	30.126	29.446	30.689
	10\%	11.391	24.087	29.527	32.134	$\underline{35.428}$	34.169	37.121
	20\%	11.904	29.944	35.097	36.791	41.010	40.453	44.009
	Time (s)	-	4.74	15.72	63.50	181.25	26.27	154.67
News	5\%	8.806	15.185	26.791	25.972	26.942	25.064	28.887
	10\%	9.041	19.579	28.748	29.213	29.305	$\underline{30.272}$	32.551
	20\%	9.553	23.935	34.533	32.367	32.923	34.897	36.206
	Time (s)	-	7.64	31.76	36.40	521.30	128.62	342.36
Container	5\%	4.600	18.273	27.979	23.681	27.333	28.364	29.473
	10\%	4.834	21.198	31.690	26.646	28.834	33.721	34.459
	20\%	5.344	24.901	35.460	35.204	35.726	$\underline{37.536}$	38.259
	Time (s)	-	8.88	23.70	71.35	204.78	121.31	339.04
HSV	5\%	7.494	11.579	39.736	42.459	42.501	42.675	48.999
	10\%	7.729	22.795	44.756	47.563	47.132	49.067	52.743
	20\%	8.240	32.631	50.123	51.065	51.961	53.566	54.678
	Time (s)	-	9.32	19.57	144.98	459.79	101.77	493.38

Discussions

(a) MPSNR versus inner TWranks when outer TW-ranks and all TR-ranks are 6.

(b) MPSNR versus outer TWranks when inner TW-ranks and all TR-ranks are 4.

(c) The number of hyper-parameters of FCTN and TW decompositions against tensor dimension

Conclusions

\square Propose a novel tensor wheel (TW) decomposition.
\square Provide one numerical application (i.e., tensor completion) of TW.

Thank you!

School of Mathematical Sciences,

 University of Electronic Science and Technology of China (UESTC)Homepage: https://zhongchengwu.github.io Code: https://github.com/zhongchengwu/code_TWDec

