

Tensor Wheel Decomposition and Its Tensor Completion Application

Zhong-Cheng Wu¹

Ting-Zhu Huang^{*,1}, Liang-Jian Deng^{*,1}, Hong-Xia Dou², Deyu Meng^{3,4}

¹University of Electronic Science and Technology of China ²Xihua University ³Xi'an Jiaotong University ⁴Pazhou Laboratory (Huangpu)

- Background and Related Works
- Motivation and TW Decomposition
- Numerical Application to Tensor Completion
- Experimental Results

Background and Related Works

- Motivation and TW Decomposition
- Numerical Application to Tensor Completion
- Experimental Results

Background: Tensor Decompositions

Zhong-Cheng Wu (UESTC)

Related Works: Tensor Networks

(c) FCTN decomposition

Background and Related Works

Motivation and TW Decomposition

Numerical Application to Tensor Completion

Experimental Results

Motivation

Zhong-Cheng Wu (UESTC)

Tensor Wheel (TW) Decomposition

element-wise relation:

$$\mathcal{X}(i_1, i_2, \cdots, i_N) = \sum_{r_1=1}^{R_1} \sum_{r_2=1}^{R_2} \cdots \sum_{r_N=1}^{R_N} \sum_{l_1=1}^{L_1} \cdots \sum_{l_N=1}^{L_N} \{\mathcal{G}_1(r_1, i_1, l_1, r_2) \mathcal{G}_2(r_2, i_2, l_2, r_3) \cdots \\ \mathcal{G}_k(r_k, i_k, l_k, r_{k+1}) \cdots \mathcal{G}_N(r_N, i_N, l_N, r_1) \mathcal{C}(l_1, l_2, \cdots, l_N) \}.$$

Zhong-Cheng Wu (UESTC)

Tensor Wheel (TW) Decomposition

tensor-form relation:

$$\mathcal{X} = \mathcal{G}_1 \times_1^4 \mathcal{G}_2 \times_1^6 \cdots \times_1^{2k} \mathcal{G}_k \times_1^{2k+2} \cdots \times_{1,4}^{2N,1} \mathcal{G}_N \times_{1,2,\cdots,N}^{2,4,\cdots,2N} \mathcal{C}$$

Background and Related Works

- Motivation and TW Decomposition
- Numerical Application to Tensor Completion
- Experimental Results

TW-TC Model and PAM-based Algorithm

• TW-TC model:

$$\min_{\mathcal{X},\mathcal{G}_{1:N},\mathcal{C}} \frac{1}{2} \|\mathcal{X} - \mathsf{TW}[\![\{\mathcal{G}_k\}_{k=1}^N;\mathcal{C}]\!]\|_F^2 + \iota(\mathcal{X}) \text{ with } \iota(\mathcal{X}) := \begin{cases} 0, & \mathcal{X} \in \{\mathcal{L}: \mathcal{P}_{\Omega}(\mathcal{L}) = \mathcal{P}_{\Omega}(\mathcal{F}) \}; \\ \infty, & \text{otherwise} \end{cases}$$

• Iterative algorithm:

$$\begin{cases} \mathcal{G}_{k}^{(t+1)} \in \operatorname*{arg\,min}_{\mathcal{G}_{k}} \left\{ \frac{1}{2} \| \mathcal{X}^{(t)} - \operatorname{TW} \llbracket \mathcal{G}_{1:k-1}^{(t+1)}, \mathcal{G}_{k}, \mathcal{G}_{k+1:N}^{(t)}; \mathcal{C}^{(t)} \rrbracket \|_{F}^{2} + \frac{\rho}{2} \| \mathcal{G}_{k} - \mathcal{G}_{k}^{(t)} \|_{F}^{2} \right\}, \\ \mathcal{C}^{(t+1)} \in \operatorname*{arg\,min}_{\mathcal{C}} \left\{ \frac{1}{2} \| \mathcal{X}^{(t)} - \operatorname{TW} \llbracket \mathcal{G}_{1:N}^{(t+1)}; \mathcal{C} \rrbracket \|_{F}^{2} + \frac{\rho}{2} \| \mathcal{C} - \mathcal{C}^{(t)} \|_{F}^{2} \right\}, \\ \mathcal{X}^{(t+1)} \in \operatorname*{arg\,min}_{\mathcal{X}} \left\{ \frac{1}{2} \| \mathcal{X} - \operatorname{TW} \llbracket \mathcal{G}_{1:N}^{(t+1)}; \mathcal{C}^{(t+1)} \rrbracket \|_{F}^{2} + \frac{\rho}{2} \| \mathcal{X} - \mathcal{X}^{(t)} \|_{F}^{2} + \iota(\mathcal{X}) \right\}. \end{cases}$$

Background and Related Works

- Motivation and TW Decomposition
- Numerical Application to Tensor Completion
- Experimental Results

Synthetic Data Completion

Zhong-Cheng Wu (UESTC)

Real-world Data Completion: Visualization

Real-world Data Completion: Numeralization

Data Index	(<u> </u>				Method			
		Observed	HaLRTC [18]	t-SVD [33]	TMacTT 3	TRLRF [32]	FCTN-TC [37]	TW-TC
Тоу	5%	11.156	19.446	25.379	27.596	30.126	29.446	30.689
	10%	11.391	24.087	29.527	32.134	35.428	34.169	37.121
	20%	11.904	29.944	35.097	36.791	41.010	40.453	44.009
	Time (s)	_	4.74	15.72	63.50	181.25	26.27	154.67
News	5%	8.806	15.185	26.791	25.972	26.942	25.064	28.887
	10%	9.041	19.579	28.748	29.213	29.305	30.272	32.551
	20%	9.553	23.935	34.533	32.367	32.923	34.897	36.206
	Time (s)	—	7.64	31.76	36.40	521.30	128.62	342.36
Container	5%	4.600	18.273	27.979	23.681	27.333	28.364	29.473
	10%	4.834	21.198	31.690	26.646	28.834	33.721	34.459
	20%	5.344	24.901	35.460	35.204	35.726	37.536	38.259
	Time (s)	-	8.88	23.70	71.35	204.78	121.31	339.04
HSV	5%	7.494	11.579	39.736	42.459	42.501	42.675	48.999
	10%	7.729	22.795	44.756	47.563	47.132	49.067	52.743
	20%	8.240	32.631	50.123	51.065	51.961	53.566	54.678
	Time (s)	—	9.32	19.57	144.98	459.79	101.77	493.38

Discussions

(a) MPSNR versus inner TWranks when outer TW-ranks and all TR-ranks are 6. (b) MPSNR versus outer TWranks when inner TW-ranks and all TR-ranks are 4. (c) The number of hyper-parameters of FCTN and TW decompositions against tensor dimension

Thirty-sixth Conference on Neural Information Processing Systems

Conclusions

Propose a novel tensor wheel (TW) decomposition.

Provide one numerical application (i.e., tensor completion) of TW.

Thank you!

School of Mathematical Sciences,

University of Electronic Science and Technology of China (UESTC)

Homepage: https://zhongchengwu.github.io

Code: https://github.com/zhongchengwu/code_TWDec